Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

BINAP binaphthyl

The BINAP ligand 5 (Figure 1) has numerous unique features. The diphosphine is characterized by full aromatic substitution, which exerts steric influence, provides polarizability, and enhances the Lewis acidity of the metal complex. The BINAP molecule is conformationally flexible and can accommodate a wide variety of transition metals by rotation about the binaphthyl C(1)-C(T) pivot and C(2 or 2 )-P bonds without a serious increase in torsional strain. The framework of the chiral ligand determines enantioselectivity but can also alter the reactivity of the metal complex. In addition, the BINAP binaphthyl groups are axially dissymmetric possessing Cj symmetry,14 resulting in the production of an excellent asymmetric environment.lf... [Pg.48]

Catalytic asymmetric hydrogenation was one of the first enantioselective synthetic methods used industrially (82). 2,2 -Bis(diarylphosphino)-l,l -binaphthyl (BINAP) is a chiral ligand which possesses a Cg plane of symmetry (Fig. 9). Steric interactions prevent interconversion of the (R)- and (3)-BINAP. Coordination of BINAP with a transition metal such as mthenium or rhodium produces a chiral hydrogenation catalyst capable of inducing a high degree of enantiofacial selectivity (83). Naproxen (41) is produced in 97% ee by... [Pg.248]

For the performance of an enantioselective synthesis, it is of advantage when an asymmetric catalyst can be employed instead of a chiral reagent or auxiliary in stoichiometric amounts. The valuable enantiomerically pure substance is then required in small amounts only. For the Fleck reaction, catalytically active asymmetric substances have been developed. An illustrative example is the synthesis of the tricyclic compound 17, which represents a versatile synthetic intermediate for the synthesis of diterpenes. Instead of an aryl halide, a trifluoromethanesul-fonic acid arylester (ArOTf) 16 is used as the starting material. With the use of the / -enantiomer of 2,2 -Z7w-(diphenylphosphino)-l,F-binaphthyl ((R)-BINAP) as catalyst, the Heck reaction becomes regio- and face-selective. The reaction occurs preferentially at the trisubstituted double bond b, leading to the tricyclic product 17 with 95% ee. °... [Pg.157]

The disclosure, in 1982, that cationic, enantiopure BINAP-Rh(i) complexes can induce highly enantioselective isomerizations of allylic amines in THF or acetone, at or below room temperature, to afford optically active enamines in >95 % yield and >95 % ee, thus constituted a major breakthrough.67-68 This important discovery emerged from an impressive collaborative effort between chemists representing Osaka University, the Takasago Corporation, the Institute for Molecular Science at Okazaki, Japan, and Nagoya University. BINAP, 2,2 -bis(diphenylphosphino)-l,l -binaphthyl (Scheme 7), is a fully arylated, chiral diphosphine which was introduced in... [Pg.349]

BINAP 2,2 -bis(diphenylphosphino)-1,1 -binaphthyl KHMDS potassium bis(trimefhylsilyl)amide... [Pg.809]

Other chiral ligands such as BINAP (where BINAP is bis(diarylphosphino)-1,1 binaphthyl) or aminophosphines are also efficient for stereoselective synthesis of chiral-at-metal Ru complexes [39-41]. [Pg.280]

Concerning enantioselective processes, Fujihara and Tamura have proved that palladium NPs containing (S)-BINAP (2,2 -bis(diphenylphosphino)-l,l -binaphthyl) as chiral stabiliser, catalyse the hydrosilylation of styrene with trichlorosilane, obtaining (S)-l-phenylethanol as the major isomer (ee = 75%) [42]. In contrast, the palladium complex [Pd(BINAP)(C3H5)]Cl is inactive for the same reaction [43]. [Pg.431]

Fig. 5.3. (a) View of (S)-BINAP-ruthenium complex showing the chiral environment, (b) Relationship of reactant to chiral environment showing preferred orientation. The binaphthyl rings are omitted for clarity. Adapted from J. [Pg.382]

Related catalysts include both a chiral BINAP-type phosphine and a chiral diamine ligand. A wide range of aryl ketones gave more than 95% enantioselectivity when substituted-l,l -binaphthyl and ethylene diamines were used.52... [Pg.392]

A series of diastereomeric platinum(II) complexes of the type c -[PtL2Y2]2+ (L - 3-bromopyr-idine, quinoline, isoquinoline Y = PEt3, Y2 = dppp, (/ )-(I )-2,2 -bis(diphenylphosphino)-l, l -binaphthyl (R-( I )-binap)) have been prepared by the reaction of c -[PtY2(OTf)2] (OTf=tri-trifluoromethanesulfonate) with two equivalents of the N-donor ligand.207 Related complexes have also been studied, for example when L = pyridine.208 Restricted rotation about the Pt—N bonds in many of the complexes is usually detected by NMR spectroscopy, with only [Pt(dppp)(isoquinoline)2]2+ (65) exhibiting dynamic behavior at ambient temperatures. The PEt3... [Pg.699]

MeOBIPHEP is the atropisomeric diphosphine 2,2,-bis(diphenylphosphino)-6,6 -dimethoxy-l,-l -biphenyl (100), has been synthesized. In the presence of SnCl2, this species is an efficient catalyst for the asymmetric hydroformylation of styrene. Asymmetric inductions are higher than those attainable using the system [PtCl2 (i )-(+)-BINAP ]/SnCl2, where BINAP is 2,2 -bis(di-phenylphosphino)-l,l,-binaphthyl. The influence of CO and H2 partial pressures on the catalytic activity of the (99)/SnCl2 system has also been studied.328 Complexes [PtMeCl(P-P)][(101), P-P = (5)-6,6,-(dimethoxybiphenyl)-2,2,-diylbis(diphenylphosphine) ((5)-MOBIPH) (102),... [Pg.168]

Early work in the field of asymmetric hydroboration employed norbornene as a simple unsaturated substrate. A range of chiral-chelating phosphine ligands were probed (DIOP (5), 2,2 -bis(diphenyl-phosphino)-l,l -binaphthyl (BINAP) (6), 2,3-bis(diphenylphosphino)butane (CHIRAPHOS) (7), 2,4-bis(diphenylphosphino)pentane (BDPP) (8), and l,2-(bis(o-methoxyphenyl)(phenyl)phos-phino)ethane) (DIPAMP) (9)) in combination with [Rh(COD)Cl]2 and catecholborane at room temperature (Scheme 8).45 General observations were that enantioselectivities increased as the temperature was lowered below ambient, but that variations of solvent (THF, benzene, or toluene) had little impact. [Pg.271]

Pu and co-workers incorporated atropisomeric binaphthols in polymer matrixes constituted of binaphthyl units, the macromolecular chiral ligands obtained being successfully used in numerous enantioselective metal-catalyzed reactions,97-99 such as asymmetric addition of dialkylzinc reagents to aldehydes.99 Recently, they also synthesized a stereoregular polymeric BINAP ligand by a Suzuki coupling of the (R)-BINAP oxide, followed by a reduction with trichlorosilane (Figure 10).100... [Pg.453]

A palladium-catalyzed protocol for carbon-sulfur bond formation between an aryl triflate and para-methoxybenzylthiol was introduced by Macmillan and Anderson (Scheme 6.66) [138], Using palladium(II) acetate as a palladium source and 2,2 -bis(diphenylphosphino)-l,l -binaphthyl (BINAP) as a ligand, microwave heating of the two starting materials in N,N-dimethylformamide at 150 °C for 20 min in the presence of triethylamine base led to the formation of the desired sulfide in 85% yield. [Pg.153]

In 1997, Miyaura and co-workers reported the nonasymmetric version of 1,4-addition of aryl- and alkenylboronic acids to a,/ -unsaturated ketones using rhodium-phosphine complex as the catalyst.97 Later, Hayashi and Miyaura realized the asymmetric 1,4-addition with high catalytic activity and enantioselectivity.98 In the presence of ( y)-BINAP, the reaction of 2-cyclohexenone with 2.5 equiv. of phenylboronic acid gave (A)-3-phenylcyclohexanone with 97% ee (BINAP = 2,2 -bis (diphenylphosphino)-l,l -binaphthyl Scheme 29).99... [Pg.384]

The first example of an enantioselective [5 + 2]-cycloaddition was reported for the tethered alkene-VCP 7a, which upon treatment with a chiral rhodium complex afforded the m-fused bicyclo[5.3.0]decene 8a in 80% yield and 63% enantiomeric excess (ee) (Equation (6)).39 A later study found that when a 2,2-bis(diphenyl-phosphanyl)-l,l-binaphthyl (BINAP)-modified rhodium(l) catalyst is used, good to excellent ee s and yields are achieved with a variety of substrates (Equation (7)).40... [Pg.609]


See other pages where BINAP binaphthyl is mentioned: [Pg.561]    [Pg.106]    [Pg.185]    [Pg.569]    [Pg.573]    [Pg.133]    [Pg.1201]    [Pg.211]    [Pg.19]    [Pg.400]    [Pg.636]    [Pg.74]    [Pg.626]    [Pg.172]    [Pg.276]    [Pg.322]    [Pg.344]    [Pg.137]    [Pg.138]    [Pg.143]    [Pg.138]    [Pg.148]    [Pg.151]    [Pg.310]    [Pg.109]    [Pg.144]    [Pg.184]    [Pg.2]    [Pg.71]    [Pg.797]    [Pg.21]   


SEARCH



BINAP

BINAPs

Binaphthyls

Binaphthyls binap)

© 2024 chempedia.info