Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzyl ethers, synthesis

Write equations describing two different ways in which benzyl ethyl ether could be prepared by a Williamson ether synthesis J... [Pg.672]

This was confirmed by an independent analytical method by Spath and Boschan, and by a synthesis of pellotine by Spath and Becke, starting from the benzyl ether of 2-hydroxy-3 4-dimethoxyacetophenone, which was converted by aminoacetal into the Schiff s base (V). This, on treatment with sulphuric acid (73 per cent.), followed by warm water, gave 8-hydroxy-6 7-dimethoxy-l-methyh 5oquinoline (VI), of which the methiodide, m.p. 188-189-5°, on reduction furnishes pellotine (IV). From dZ-pellotine so formed Spath and Kesztler, by a special process of fractionation, isolated 1-pellotine having — 15-2° (CHCI3), for which... [Pg.158]

This is a fluorescent benzyl ether used for 2 -protection in nucleotide synthesis. It is introduced using 1 -pyrenylmethyl chloride (KOH, benzene, dioxane, reflux, 2 h, >65% yield). Most methods used for benzyl ether cleavage should be applicable to this ether. [Pg.100]

An isopropyl ether was developed as a phenol protective group that would be more stable to Lewis acids than would be an aryl benzyl ether. The isopropyl group has been tested for use in the protection of the phenolic oxygen of tyrosine during peptide synthesis."... [Pg.264]

The general features of the monensin synthesis conducted by Kishi et al. are outlined, in retrosynthetic format, in Scheme 1. It was decided to delay the construction of monensin s spiroketal substructure, the l,6-dioxaspiro[4.5]decane framework, to a very late stage in the synthesis (see Scheme 1). It seemed reasonable to expect that exposure of the keto triol resulting from the hydrogen-olysis of the C-5 benzyl ether in 2 to an acidic medium could, under equilibrating conditions, result in the formation of the spiroketal in 1. This proposition was based on the reasonable assumption that the configuration of the spiroketal carbon (C-9) in monensin corresponds to the thermodynamically most stable form, as is the case for most spiroketal-containing natural products.19 Spiro-ketals found in nature usually adopt conformations in which steric effects are minimized and anomeric effects are maximized. [Pg.187]

You will note that the oxygen atoms attached to carbons 5 and 12 in 43 reside in proximity to the C-9 ketone carbonyl. Under sufficiently acidic conditions, it is conceivable that removal of the triethylsilyl protecting groups would be attended by a thermodynamically controlled spiroketalization reaction.30 Indeed, after hydro-genolysis of the C-26 benzyl ether in 43, subjection of the organic residue to the action of para-toluenesulfonic acid in a mixture of methylene chloride, ether, and water accomplishes the desired processes outlined above and provides monensin methyl ester. Finally, saponification of the methyl ester with aqueous sodium hydroxide in methanol furnishes the sodium salt of (+)-monensin [(+)-1], Still s elegant synthesis of monensin is now complete.13... [Pg.246]

The completion of the synthesis of key intermediate 2 requires only a straightforward sequence of functional group manipulations. In the presence of acetone, cupric sulfate, and camphorsulfonic acid (CSA), the lactol and secondary hydroxyl groups in 10 are simultaneously protected as an acetonide (see intermediate 9). The overall yield of 9 is 55 % from 13. Cleavage of the benzyl ether in 9 with lithium metal in liquid ammonia furnishes a diol (98% yield) which is subsequently converted to selenide 20 according to Grie-co s procedure22 (see Scheme 6a). Oxidation of the selenium atom... [Pg.326]

Scheme 1). Introduction of a jt bond into the molecular structure of 1 furnishes homoallylic amine 2 and satisfies the structural prerequisite for an aza-Prins transform.4 Thus, disconnection of the bond between C-2 and C-3 affords intermediate 3 as a viable precursor. In the forward sense, a cation ji-type cyclization, or aza-Prins reaction, could achieve the formation of the C2-C3 bond and complete the assembly of the complex pentacyclic skeleton of the target molecule (1). Reduction of the residual n bond in 2, hydro-genolysis of the benzyl ether, and adjustment of the oxidation state at the side-chain terminus would then complete the synthesis of 1. [Pg.466]

With a secure route to pentacyclic amine 2, the completion of the total synthesis of 1 requires only a few functional group manipulations. When a solution of 2 in ethanol is exposed to Pd-C in an atmosphere of hydrogen, the isopropenyl double bond is saturated. When a small quantity of HCI is added to this mixture, the hydro-genolysis of the benzyl ether is accelerated dramatically, giving alcohol 15 in a yield of 96%. Oxidation of the primary alcohol in 15 with an excess of Jones reagent, followed by Fischer esterification, gives ( )-methyl homosecodaphniphyllate [( )-1] in an overall yield of 85 % from 2. [Pg.469]

A stereospecific Suzuki coupling is also the key step in the synthesis of trisporol B benzyl ether (111) by Suzuki et al. (see... [Pg.589]

Scheme 27. Suzuki s synthesis of trisporol B benzyl ether (111). Scheme 27. Suzuki s synthesis of trisporol B benzyl ether (111).
The synthesis of the trisubstituted cyclohexane sector 160 commences with the preparation of optically active (/ )-2-cyclohexen-l-ol (199) (see Scheme 49). To accomplish this objective, the decision was made to utilize the powerful catalytic asymmetric reduction process developed by Corey and his colleagues at Harvard.83 Treatment of 2-bromocyclohexenone (196) with BH3 SMe2 in the presence of 5 mol % of oxazaborolidine 197 provides enantiomeri-cally enriched allylic alcohol 198 (99% yield, 96% ee). Reductive cleavage of the C-Br bond in 198 with lithium metal in terf-butyl alcohol and THF then provides optically active (/ )-2-cyclo-hexen-l-ol (199). When the latter substance is treated with wCPBA, a hydroxyl-directed Henbest epoxidation84 takes place to give an epoxy alcohol which can subsequently be protected in the form of a benzyl ether (see 175) under standard conditions. [Pg.616]

The completion of the synthesis of 1 only requires two deprotection steps. Hydrogenolysis of the four benzyl ethers, followed by cleavage of the triisopropylsilyl ether with hydrofluoric acid in acetonitrile, provides paeoniflorin (1) in an overall yield of 92 %. [Pg.640]

The outcomes of intramolecular cyclizations of hydroxy vinylepoxides in more complicated systems can be difficult to predict. In a study of the synthesis of the JKLM ring fragment of dguatoxin, epoxide 44 was prepared and subjected to acid-mediated cydization conditions (Scheme 9.24) [114]. Somewhat surprisingly, the expected oxepane 45 was not formed, but instead a mixture of tetrahydropyran 46 and tetrahydrofuran 47 was obtained, both compounds products of attack of the C6 and C5 benzyl ether oxygens, respectively, on the allylic oxirane position (C3). Repetition of the reaction with dimsylpotassium gave a low yield of the desired 45 along with considerable amounts of tetrahydropyran 48. [Pg.334]

Depending on the choice of transfer agent, mono- or di-cnd-functional polymers may be produced. Addition-fragmentation transfer agents such as functional allyl sulfides (Scheme 7.16), benzyl ethers and macromonomers have application in this context (Section 6.2.3).212 216 The synthesis of PEG-block copolymers by making use of PEO functional allyl peroxides (and other transfer agents has been described by Businelli et al. Boutevin et al. have described the telomerization of unsaturated alcohols with mercaptoethanol or dithiols to produce telechelic diols in high yield. [Pg.377]

The asymmetric reduction of the benzoxathiin is very appealing because of its simplicity (Scheme 5.3). It was envisioned that intermediate 16 could be prepared from thiol-phenol 7 and bro moke tone 17. Scheme 5.8 summarized the synthesis for 16. The l,3-benzoxathiol-2-one 35 was prepared from 1,4-benzoquinone and thiourea following a literature procedure with minor modifications. Benzylation of 35 with benzyl bromide in the presence of KI gave benzyl ether 36 as a crystalline solid. It was observed that the benzylation gave better results when the reaction was run under anaerobic conditions. Hydrolysis of thiocarbonate 36 gave free thiophenol 7 which was used directly in the next reaction. [Pg.150]

With the sodium derivative of benzyl alcohol, dibenzyl ether was obtained in 63% yield, accompanied by 24% of A-benzylimidazole. Formation of the latter compound results from the reaction of the benzyl sulfonate with imidazol sodium in competition with the second step of the ether synthesis (b). [Pg.364]

A modification (142) of the synthesis of cryptopleurospermine (159) applied the O-benzoyl cyanohydrin of isovanillin benzyl ether (171) for nucleophilic... [Pg.282]

Benzyl esters of carboxylic acids are frequently used in organic synthesis for the protection of carboxyl groups. The C-O bond in benzyl esters can be cleaved more easily than the corresponding benzyl ether bond. The hydrogenolysis of an ester leads to carboxylic acid and toluene. Examples of debenzylation of benzyl esters of carboxylic acids on Pd/C catalysts are summarized in Table 4.4. [Pg.144]

The availability of oxepins that bear a side chain containing a Lewis basic oxygen atom (entry 2, Table 6.4) has further important implications in enantioselective synthesis. The derived alcohol, benzyl ether, or methoxyethoxymethyl (MEM) ethers, in which resident Lewis basic heteroatoms are less sterically hindered, readily undergo diastereoselective uncatalyzed alkylation reactions when treated with a variety of Grignard reagents [17]. The examples shown below (Scheme 6.7) demonstrate the excellent synthetic potential of these stereoselective alkylations. [Pg.190]


See other pages where Benzyl ethers, synthesis is mentioned: [Pg.59]    [Pg.83]    [Pg.59]    [Pg.83]    [Pg.327]    [Pg.157]    [Pg.39]    [Pg.309]    [Pg.64]    [Pg.130]    [Pg.194]    [Pg.436]    [Pg.569]    [Pg.781]    [Pg.783]    [Pg.302]    [Pg.137]    [Pg.311]    [Pg.1247]    [Pg.485]    [Pg.493]    [Pg.293]    [Pg.61]    [Pg.174]    [Pg.174]    [Pg.81]    [Pg.44]    [Pg.159]    [Pg.70]    [Pg.136]   
See also in sourсe #XX -- [ Pg.84 ]




SEARCH



Benzyl ethers

Benzylic ethers

Ether synthesis

© 2024 chempedia.info