Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzoquinone 1.4- , cycloaddition with

An interesting example of accelerating a reaction when high pressure is applied is the synthesis of a series of highly functionalized 4a,5,8,8a-tetrahy-dro-l,4-naphthalenediones 10 by cycloaddition of p-benzoquinone (8) with a variety of electron-poor dienic esters 9 at room temperature (Equation 5.2) reported by Dauben and Baker [6]. Using conventional methods, these heat-sensitive cycloadducts are difficult to synthesize free of the isomeric hydroquin-ones. When the reactions were carried out under thermal conditions, the primary cycloadducts were mostly converted into the corresponding hydroqui-nones. [Pg.206]

Acyl-substituted quinolizinium ylide 63 was obtained by treatment of its 1,2-dihydro analogue with 2,3-dichloro-5,6-dicyano-l,4-benzoquinone (DDQ). Its 1,3-dipolar cycloaddition with an acetylenic ester in excess was regioselective and was accelerated in polar solvents yielding the intermediate adduct 64 and finally the corresponding cyclazine 65, as shown in Scheme 2 <2001JOC1638>. [Pg.14]

Functionalized dienophiles have long been used in synthetic organic chemistry. For example a substituted benzoquinone (a dienophile) underwent cycloaddition with 1,3 butadiene and was the first step in the early synthesis of steroids. [Pg.53]

The asymmetric Diels-Alder cycloadditions of enantiopure (5)-5-(/ -tolylsulfinyl)-1,4-benzoquinones with Dane s diene under thermal and Lewis acid conditions produce tetracyclic quinones after spontaneous elimination of the sulfinyl group.The Diels-Alder reaction of barrelene with o-benzoquinone produces tetracyclo[6.2.2.2 .0 ]tetradeca-9,ll,13-triene-4,5-dione. Under kinetic control, the Diels-Alder cycloaddition of 2,3-dicyano-p-benzoquinone (98) with cyclopentadiene in MeOH produces the single cycloadduct (99) (Scheme 38). ... [Pg.475]

An interesting entry to functionalized dihydropyrans has been intensively studied by Tietze in the 1990s using a three-component domino-Knoevenagel Hetero-Diels-Alder sequence. The overall transformation involves the transient formation of an activated heterodienophile by condensation of simple aldehydes with 1,3-dicarbonyls such as barbituric acids [127], Meldrum s acid [128], or activated carbonyls. In situ cycloaddition with electron-rich alkenes furnished the expected functionalized dihydropyrans. Two recent examples concern the reactivity of 1,4-benzoquinones and pyrazolones as 1,3-dicarbonyl equivalents under microwave irradiation. In the first case, a new three-component catalyst-free efficient one-pot transformation was proposed for the synthesis of pyrano-1,4-benzoquinone scaffolds [129]. In this synthetic method, 2,5-dihydroxy-3-undecyl-1,4-benzoquinone, paraformaldehyde, and alkenes were suspended in ethanol and placed under microwave irradiations to lead regioselectively the corresponding pyrano-l,4-benzoquinone derivatives (Scheme 38). The total regioselectivity was... [Pg.251]

The double [4-1-1] cycloaddition with tetrachloro- and 3,5-di(t-butyl)-o-benzoquinone results in zwitterionic products with six-coordinate phosphorus (Equation (18)) <84TL552i>. [Pg.808]

Nan ya et al. (97) also reported the synthesis of isoindolediones by the reaction of miinchnones with 1,4-benzoquinones. Reactions with an unsymmetrical mtinchnone were not regioselective. Several groups have examined the reactions of miinchnones with unsaturated nitriles, including 2-chloroacrylonitrile (98), cinna-monitrile (78,99) and fumaronitrile (78) to give unexpected products in several cases. Eguchi and co-workers (100) smdied the cycloaddition of several mtinch-nones with electron-deficient trifluoromethylated olehns. Thus, miinchnones 176... [Pg.711]

Dimethylaminofulvene undergoes a [6-I-3] cycloaddition with benzoquinones to give cyclopenta[c]chromenes, offering a new approach to the 11-oxasteroid system (Scheme 7) <99CC2125>. [Pg.321]

Isocyanides, which are better candidates to react with dienes in a 1,4-fashion, were shown to cycloadd to 1-azadienes. Thus, the formation of isoindole derivative 15 as the major product (ca. 28% yield), upon treatment of benzoquinone 13 with two equivalents of p-tolyl isocyanide [81AG(E)982] was reported the reaction involves the insertion of the isocyanide carbon atom into the C—H bond of 13 leading to the 1-azadiene derivative 14, which in turn undergoes a [4 + 1] cycloaddition with a second isocyanide molecule (Scheme 4). [Pg.5]

Furans also undergo cycloadditions with o-benzoquinones. Thus furan, 2-methylfuran, 2,5-diphenylfuran and benzo[ >]furan yield dihydrofurobenzodioxins of type (238) with tetrachloro-l,2-benzoquinone (Scheme 83). The reaction of furan with 1,2-benzoquinone affords only a 1% yield of adduct because most of the quinone undergoes polymerization. The reaction with 2-methylfuran produces a 25% yield of adduct, however. The reactions are thought to involve the electrophilic attack of the quinone on the furan to produce a carbonium ion. In the case of 2-methylfuran the more stable carbonium ion (239) is produced. Evidence for a two-step mechanism is the diversion of the intermediate (239) to the addition product (240) which may be isolated when the reaction is conducted in the presence of ethanol (69JCS(C)1694). [Pg.632]

The anion derived from 2,3-dimethyl-l,4-naphthoquinone behaves as a quinone methide and undergoes a [l,4]-cycloaddition with the benzoquinone (193). The product is the xanthene derivative (194) (70JCS(C)722). There is no indication of the formation of the isomeric xanthene. A [l,3]-cycloaddition occurs simultaneously which leads to the fluorene derivative (195). [Pg.767]

Molecular electrostatic potentials have been used to explain the regioselectivity exhibited in the Diels-Alder cycloaddition reactions between 1-trimethylsilyloxy-butadiene and the quinones 5-formyl-8-methyl-1,4-naphthoquinone, 5-methoxy-7-methyl-1,4-phenanthrenequinone, and 5,6,7-trimethyl-1,4-phenanthrenequinone.128 The intramolecular Diels-Alder reaction of masked o-benzoquinones (123) with a variety of dienes provides adducts (124) which rearrange to functionalized ris-decal ins (125) with complete stereocontrol of up to five stereocentres. This methodology ... [Pg.372]

Recently, the reaction of masked ortho-benzoquinone [92] with C60 was tested [93]. The [4+2] cycloaddition reaction of such electron-deficient dienes with fullerenes resulted in the formation of highly functionalized bicyclo [2.2.2] octenone-fused fullerenes. The reactants were generated in situ by the oxidation of the readily available 2-methoxy phenols with hypervalent iodine agents. For the several different masked ortho-benzoquinones that were tested, it was found that the yield of the cycloadducts depends on the nature of the starting materials and the reaction conditions. Other Diels-Alder reactions of such electron-deficient dienes with electron-poor fullerenes involved tropones [94], 1,3-butadienes substituted with electron-withdrawing groups [95], and 2-pyrone [96]. [Pg.9]

Fig (25) Catechol (201) on oxidation with silver oxide generates 3-isopropyl-o-benzoquinone (199) which undergoes ultrasound-promoted cycloaddition with 6,6-dimethyl-1 -vinylcyclohexene (200) yielding the synthesis of miltirone (197). [Pg.215]

Thiophenes can act as dienophiles in Diels-Alder reactions with electron-poor dienes such as hexachlorocyclopen-tadiene, tetrazines, or o-quinone monoimines. The masked o-benzoquinone 64 can undergo inverse electron demand cycloadditions with thiophene itself or simple derivatives such as 2-methyl-, 2-methoxy-, and 2,4-dimethylthiophene (Scheme 5) <2001TL7851>. Depending on the substitution pattern on the thiophene skeleton, different cycloadducts can be observed. The basic thiophene skeleton gives rise to a bis-adduct 65. By blocking the second double bond with a methyl or methoxy group, a 1 1 adduct 66 or 67, respectively, is obtainable in moderate yield. [Pg.942]

The most useful application of 3 is its use in photochemical [2+2] cycloadditions with alkenes and alkynes at the carbon-carbon double bond to afford bicyclo[4.2.0]octane-2,5-diones and bicyclo[4.2.0]oct-7-ene-2,5-diones in good to excellent yield.6 Since selenium dioxide oxidation of the resulting adducts furnishes the corresponding 3-ene-2,5-diones, diketone 3 can be regarded as a 1,4-benzoquinone equivalent leading to [2+2] cycloadducts at the carbon-carbon double bond. [Pg.259]

It has been demonstrated that N-hydroxytryptophan can be converted to /3-carbolines in two ways (Fig. 41). Pictet-Spengler reaction of 1 with acetals provided the N -hydroxytetrahydro-/8-carbolines (2) (287). A modified Bischler-Napieralski reaction of 1 with trimethylorthoformate gave N -0X0-3,4-dihydro-/3-carbolines (3), the nitrone function of which can undergo 1,3-dipolar cycloaddition with alkenes (288) and nitriles (289), providing isoxazolidine (4) and dehydro-1,2,4-oxadiazoline (5), annulated TBCs, respectively. Nitrone 3 also was obtained by oxidation of the N-hydroxy-j8-carboline 2 with 2,3-dichloro-5,6-dicyano-l, 4-benzoquinone (DDQ). N-Oxygenated TBCs showed no affinity for the benzodiazepine and tryptamine receptors (290). Unfortunately, no toxicity data were recorded for these substituted hydroxylamines. [Pg.170]

The carbonyl ir-bond has been found to add chemo- and regio-selectively across the alkenic ir-bond of ketenes. Thus diphenylketene readily reacts with benzoquinone to yield a stable [2 + 2] adduct (equation 1). With an excess of diphenylketene the bis-adduct is formed, which decomposes into tetraphe-nylquinodimethane and carbon dioxide (equation 2). With the less stable ketene, thermal [2 + 2] cycloadditions are observed with highly electrophilic carbonyl compounds (equation 3). With unactivated aldehydes and ketones, yields are much lower due to a faster oligomerization of the ketene reagent. However, in the presence of a Lewis acid catalyst, most aldehydes or ketones form P-lactones with ketene (equation 4). Cycloadditions with ketones usually require more active catalysts than with aldehydes. The catalyzed reaction of ketene with methyl vinyl ketone is chemoselective, yielding a 10 1 ratio of [2 + 2] versus [4 + 2] adducts (equation 5). In the absence of catalyst, methyl vinyl ketone reacts with ketene to give exclusively the [4 + 2] adduct. [Pg.86]

Anthraquinonecarboxamide in its Sj state will photoadd two molecules of water. The photoreactions of diphenylhomobenzoquinones in the presence of amine donors have been studied. 1-Bromo substituted diphenylhomobenzoqui-none irradiated in the presence of triethylamine induces opening of the cyclopropane ring with formation of 2-diphenylmethyl-5-methyl-l,4-benzoquinone, and with dimethylaniline, a mixture of an aminated bicyclic dione and bis(p-dimethyl-aminophenyl)methane is produced. Irradiation of boron difluoride complexes derived from 1,3-diketones can lead to a number of different types of process, in particular exciplex formation and slow cycloaddition. Evidence has now been advanced to suggest that excitation of these complexes leads directly to an exciplex without the participation of an encounter complex, and that this solvolyses to free ions. [Pg.173]

Following the same strategy, further improvements in similar catalytic asymmetric [4 + 2] cycloaddition reaction have been made by Lectka group. The cyclic 1,4-benzoxazinones 3 (Scheme 10.4) that rely on the highly enantioselective [4 + 2] cycloaddition of o-benzoquinone imides with chiral ketene enolates were efficiently constructed, which can be derivatized in situ to provide a-amino acid derivatives in good to excellent yields and with virtual enantiopurity [9]. [Pg.298]

Scheme 10.4 [4 + 2] cycloaddition of o-benzoquinone imides with ketene enolates. [Pg.299]

According to theoretical studies, the HOMO of benzocyclopropene is mainly located at the bridging rr-bond and it therefore would be predicted that it would participate in cycloadditions with electron-deficient dienes. Stable adducts 1 with the norcaradiene structure were obtained upon heating benzocyclopropene with 4,5-dibromo-l,2-benzoquinone, 4,5-dichloro-l,2-ben-zoquinone and tetrachlorobenzoquinone. ... [Pg.2919]

Dienes 19 and 20 only react with A-phenylmaleimide (21) when the reactions are activated by high pressure cycloadditions with the more reactive dienophile 1 also occur under thermal conditions, but in lower yield. The reactions are totally a ft-(with respect to the unsubstituted benzene ring of the para-cyclophane unit ) enc/o-diastereoselective. DDQ oxidation of cycloadduct 24 led to the aromatized compound 26 while the aromatization of 23 and 25 failed. Interestingly, the cycloaddition between 1 and 19 led to the aromatized compound 22 this clearly indicates that 1,4-benzoquinone also acts as an oxidant. [Pg.242]


See other pages where Benzoquinone 1.4- , cycloaddition with is mentioned: [Pg.86]    [Pg.28]    [Pg.70]    [Pg.1186]    [Pg.625]    [Pg.634]    [Pg.635]    [Pg.440]    [Pg.450]    [Pg.440]    [Pg.30]    [Pg.68]    [Pg.625]    [Pg.634]    [Pg.635]    [Pg.19]    [Pg.182]    [Pg.376]    [Pg.435]    [Pg.440]    [Pg.450]    [Pg.53]    [Pg.77]    [Pg.1801]   
See also in sourсe #XX -- [ Pg.361 ]




SEARCH



Alkenes, cycloaddition reactions with benzoquinones

Cycloaddition with

© 2024 chempedia.info