Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzene, 1 - metal complexes reactions

Although catalytic preparations of cyclopentadienones with other metal systems are known, chemose-lectivity is often a problem. For example, the reactions of 2-butyne, 3-hexyne and diphenylacetylene with [(CO)2RhCl]2 at 80 °C give mixtures of hexasubstituted benzenes, metal-complexed, tetrasub-stituted cyclopentadienones and quinones. An exception is the preparation of the stable tetrakis(trifluo-romethyl)cyclopentadienone from the alkyne the unusual electronic properties of the product make this result lack generality. [Pg.1134]

Studies of General Interest.- Dicationic benzene-metal complexes such as [Cp M(n-PhH) ] (M = Rh, Ir) and [ (hmb) Ru (n-PhH) ] add two hydride ions (from NaBH ) successively to give finally neutral products from which cyclohexene can be liberated by treatment with protlc acid (i.e., overall benzene + 2h + 2H - cyclohexene) j similar reactions occur with HeLl and MeONa in place of NaBH, Vanadium.- MO calculations on the triple-decker sandwich complexes... [Pg.355]

Bis ( -arene) metal complexes have been made for many transition metals by the AI/AICI3 reduction method and cationic species [M( j -Ar)2]"" " are also well established for n = 1, 2, and 3. Numerous arenas besides benzene have been used, the next most common being l,3,5-Mc3C6H3 (mesitylene) and CeMce. Reaction of arenas with metal carbonyls in high-boiling solvents or under the influence of ultraviolet light results in the displacement of 3CO and the formation of arena-metal carbonyls ... [Pg.940]

The strained-ring compound 1,1-dimethyl-l-silacyclobutane (which may be regarded as an olefin of organosilicon chemistry) reacts with diiron nonacarbonyl in benzene at 6°-20°C as shown in Eq. (100) (89). (There is here some analogy with the reactions of transition metal complexes with strained hydrocarbons, which often produce valence tautomerization.) The... [Pg.293]

Over the last decade, the chemistry of the carbon-carbon triple bond has experienced a vigorous resurgence [1]. Whereas construction of alkyne-con-taining systems had previously been a laborious process, the advent of new synthetic methodology based on organotransition metal complexes has revolutionized the field [2]. Specifically, palladium-catalyzed cross-coupling reactions between alkyne sp-carbon atoms and sp -carbon atoms of arenes and alkenes have allowed for rapid assembly of relatively complex structures [3]. In particular, the preparation of alkyne-rich macrocycles, the subject of this report, has benefited enormously from these recent advances. For the purpose of this review, we Emit the discussion to cychc systems which contain benzene and acetylene moieties only, henceforth referred to as phenylacetylene and phenyldiacetylene macrocycles (PAMs and PDMs, respectively). Not only have a wide... [Pg.82]

All mechanisms proposed in Scheme 7 start from the common hypotheses that the coordinatively unsaturated Cr(II) site initially adsorbs one, two, or three ethylene molecules via a coordinative d-7r bond (left column in Scheme 7). Supporting considerations about the possibility of coordinating up to three ethylene molecules come from Zecchina et al. [118], who recently showed that Cr(II) is able to adsorb and trimerize acetylene, giving benzene. Concerning the oxidation state of the active chromium sites, it is important to notice that, although the Cr(II) form of the catalyst can be considered as active , in all the proposed reactions the metal formally becomes Cr(IV) as it is converted into the active site. These hypotheses are supported by studies of the interaction of molecular transition metal complexes with ethylene [119,120]. Groppo et al. [66] have recently reported that the XANES feature at 5996 eV typical of Cr(II) species is progressively eroded upon in situ ethylene polymerization. [Pg.25]

Cycloaddition reactions catalysed by transition metal complexes are an important tool in the construction of a wide range of carbo- and hetero-cyclic systems, such as benzene, pyridines, triazoles, etc. [7]. In general, these reactions are extremely atom-efficient and involve the formation of several C-C bonds in a single step. Among the innumerable possible catalytic systems for the cycloaddition reaction the NHC-metal complexes have received special attention [7c]. [Pg.134]

This exemplified that the oxidative addition of S-S bond to a low-valent metal complex is one prototype to initiate a reaction using a disulfide. In 1987, Uemura et al. reported an analogous transformation using (PhSe)2 instead of (PhS)2 to afford the phenyl selenobenzoate 58 in up to 78% yield under 100 atm of CO in benzene at 200°C (Eq. 7.44) [50]. [Pg.234]

Precursors synthesis The observed reaction of TaniaPhos (2) with [Ru(benzene)Cl2]2 or [Ru(p-cymene)Cl2]2 confirmed that defined and stable metal-complexes could also be synthesized with this ligand. [Pg.206]

The success of this reaction was ascribed to the solubility of the chlorozinc intermediate, whereas other chloramine-T derivatives (e.g. the sodium salt) are insoluble. An alternative non-nitrene pathway was not eliminated from consideration. On the other hand, no aromatic substitution or addition, characteristic of a free sulphonyl nitrene (see below), took place on treatment of jV,lV-dichloromethanesulphonamides with zinc powder in benzene in the cold or on heating. The only product isolated was that of hydrogen-abstraction, methanesulphonamide 42>, which appears to be more characteristic of the behaviour of a sulphonyl nitrene-metal complex 36,37). Photolysis of iV.iV-dichloromethanesulphonamide, or dichloramine-B, or dichloramine-T in benzene solution led to the formation of some unsubstituted sulphonamide and some chlorobenzene but no product of addition of a nitrene to benzene 19>. [Pg.19]

Furthermore, ir-arene complexes of transition metals are seldom formed by the direct reaction of benzene with metal complexes. More usually, the syntheses require the formation of (often unstable) metal aryl complexes and these are then converted to ir-arene complexes. The analogous formation of w-adsorbed benzene at a metal surface via the initial formation of ff-adsorbcd phenyl, merits more consideration than it has yet been given. It is to be hoped that the recognition and study of structure-sensitive reactions will allow more exact definition of the sites responsible for catalytic activity at metal surfaces. The reactions of benzene, using suitably labeled materials, may prove to be useful probes for such studies. [Pg.154]

Even more than [6 + 4] and [8 + 2] cycloaddition reactions, the [2 + 2 + 2] cycloaddition reactions require a very well preorganized orientation of the three multiple bonds with respect to each other. In most cases, this kind of cycloaddition reaction is catalyzed by transition metal complexes which preorientate and activate the reacting multiple bonds111,324. The rarity of thermal [2 + 2 + 2] cycloadditions, which are symmetry allowed and usually strongly exothermic, is due to unfavorable entropic factors. High temperatures are required to induce a reaction, as was demonstrated by Berthelot, who described the synthesis of benzene from acetylene in 1866325, and Ullman, who described the reaction between nor-bomadiene and maleic anhydride in 1958326. As a consequence of the limiting scope of this chapter, this section only describes those reactions in which two of the participating multiple bonds are within the same molecule. [Pg.457]

Finally, a few cyclizations of unsaturated side chains on o-halogeno-anilines or -benzenes have been catalyzed by transition metal complexes. Cyclization of the cinnamylbenzylamine (245) by palladium gives some 4-benzylisoquinoline and some of compound (246) (77TL1037). Acryloylanilines (247) and (248) can be cyclized by a nickel complex (75MI20800) or by a palladium complex (79JA5281). The mechanism for the latter reaction is given in equation (50). [Pg.433]

Dimerization reactions of 1-azirines with several transition metal complexes have been studied (76TL2589). Reaction of 2-arylazirines (289) with an equimolar amount of a Group VI metal carbonyl gives 2,5-diarylpyrazines (290) in good yield. On the other hand, these compounds are converted to 2-styrylindoles (291) with rhodium carbonyl compounds or with dicobalt octacarbonyl in benzene. [Pg.76]

Nickel(O) or palladium(II) compounds in stoichiometric amounts promote the ring enlargement of simple alkyl-substituted 1,2-divinylcyclobutanes in benzene at room temperature to give 1 1 metal complexes of cycloocta-1,5-dienes.119 Destruction of the palladium complexes with potassium cyanide affords the free cycloocta-1,5-dienes. The stereochemistry observed is the same as in the thermal reaction at 150°C. [Pg.581]

The catalytic activity of the metal complex on the oxidative reaction in solution is much influenced not only by the species and the structure of the complexes but also by the chemical environment around them. For instance, in the oxidative polymerization of phenols catalyzed by a Cu complex, the reaction rate varied about 102 times with changes in the composition of the solvent, and the highest rate was observed for polymerization in a benzene solvent162. Thus, we used the copolymer of styrene and 4-vinylpyridine(PSP) as the polymer ligand and studied the effect on the catalysis of the non-polar field formed by the polymer ligand163. ... [Pg.79]

It has been found in the meantime that reaction (1) is generalizable (752), and that oxidative additions of this type occur for such widely differing substrates H2Y as ethylene, benzene 130), cyclic olefins, alkyl and aryl phosphines, aniline 337, 406), and H2S 130), ail of which give the same product structure with a triply-bridging Y ligand. The stability of these third-row transition metal clusters has stiU prevented catalytic reactions of these species, but it is likely that similar ones are involved in olefin and acetylene reactions catalyzed by other metal complexes. [Pg.19]


See other pages where Benzene, 1 - metal complexes reactions is mentioned: [Pg.154]    [Pg.155]    [Pg.88]    [Pg.145]    [Pg.33]    [Pg.164]    [Pg.23]    [Pg.212]    [Pg.2]    [Pg.679]    [Pg.23]    [Pg.115]    [Pg.468]    [Pg.539]    [Pg.16]    [Pg.227]    [Pg.98]    [Pg.180]    [Pg.116]    [Pg.45]    [Pg.64]    [Pg.143]    [Pg.338]    [Pg.375]    [Pg.397]    [Pg.1404]    [Pg.224]    [Pg.269]   
See also in sourсe #XX -- [ Pg.4 , Pg.539 ]

See also in sourсe #XX -- [ Pg.4 , Pg.539 ]




SEARCH



Benzene complexes

Benzene metalation

Benzene reactions

Benzene, 1 - metal complexes

Benzenes metallation

Metal complexes reactions

Metallated benzene

© 2024 chempedia.info