Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzene, hydrogenation nitration

Being a hydrocarbon with a solubility parameter of 18.6MPa - it is dissolved by a number of hydrocarbons with similar solubility parameters, such as benzene and toluene. The presence of a benzene ring results in polystyrene having greater reactivity than polyethylene. Characteristic reactions of a phenyl group such as chlorination, hydrogenation, nitration and sulphonation can all be performed with... [Pg.433]

Similar to the alkylation and the chlorination of benzene, the nitration reaction is an electrophilic substitution of a benzene hydrogen (a proton) with a nitronium ion (NO ). The liquid-phase reaction occurs in presence of both concentrated nitric and sulfuric acids at approximately 50°C. Concentrated sulfuric acid has two functions it reacts with nitric acid to form the nitronium ion, and it absorbs the water formed during the reaction, which shifts the equilibrium to the formation of nitrobenzene ... [Pg.278]

Description Aniline is produced by the nitration of benzene with nitric acid to mononitrobenzene (MNB) which is subsequently hydrogenated to aniline. In the DuPont/KBR process, benzene is nitrated with mixed acid (nitric and sulfuric) at high efficiency to produce mononitrobenzene (MNB) in the unique dehydrating nitration (DHN) system. The DHN system uses an inert gas to remove the water of nitration from the reaction mixture, thus eliminating the energy-intensive and high-cost sulfuric acid concentration system. [Pg.21]

Palladium-silica catalysts prepared from tetra-ammine palladous nitrate (to avoid chlorine introduction) showed a marked reduction effect , viz, the specific activity for benzene hydrogenation decreased with increased reduction temperature, i.e., 573 or 723Various explanations were considered, including a metal-support interaction. After reduction at 873 K, X-ray diffraction provided clear evidence of chemical reaction and at lower temperatures silicon insertion into palladium might still occur, which could either disrupt the palladium ensembles required for benzene adsorption or modify the properties of single palladium atoms, if these are the active sites. [Pg.64]

An aqueous mixture of benzene, hydrogen peroxide, ferric nitrate and a catalytic proportion of hexadecyltrimethylammonium bromide at 35-50 C has been claimed to afford an 82% yield of phenol although this was only 8-10% without the phase-transfer catalyst (ref. 13). [Pg.25]

The value of the second-order rate constant for nitration of benzene-sulphonic acid in anhydrous sulphuric acid varies with the concentration of the aromatic substrate and with that of additives such as nitromethane and sulphuryl chloride. The effect seems to depend on the total concentration of non-electrolyte, moderate values of which (up to about 0-5 mol 1 ) depress the rate constant. More substantial concentrations of non-electrolytes can cause marked rate enhancements in this medium. Added hydrogen sulphate salts or bases such as pyridine... [Pg.18]

Nitration Warming benzene with a mixture of nitric acid and sulfuric acid gives nitrobenzene A nitro group (—NO2) replaces one of the ring hydrogens... [Pg.475]

Rhenium oxides have been studied as catalyst materials in oxidation reactions of sulfur dioxide to sulfur trioxide, sulfite to sulfate, and nitrite to nitrate. There has been no commercial development in this area. These compounds have also been used as catalysts for reductions, but appear not to have exceptional properties. Rhenium sulfide catalysts have been used for hydrogenations of organic compounds, including benzene and styrene, and for dehydrogenation of alcohols to give aldehydes (qv) and ketones (qv). The significant property of these catalyst systems is that they are not poisoned by sulfur compounds. [Pg.164]

The most notable chemistry of the biscylopen-tadienyls results from the aromaticity of the cyclopentadienyl rings. This is now far too extensively documented to be described in full but an outline of some of its manifestations is in Fig. 25.14. Ferrocene resists catalytic hydrogenation and does not undergo the typical reactions of conjugated dienes, such as the Diels-Alder reaction. Nor are direct nitration and halogenation possible because of oxidation to the ferricinium ion. However, Friedel-Crafts acylation as well as alkylation and metallation reactions, are readily effected. Indeed, electrophilic substitution of ferrocene occurs with such facility compared to, say, benzene (3 x 10 faster) that some explanation is called for. It has been suggested that. [Pg.1109]

After this reaction-time, the evolution of hydrogen is ceased. Then there are added successively 60 parts dimethylformamide and 8 parts of p-chlorobenzylchloride and stirring and refluxing is continued for another two hours. The tetrahydrofuran is removed at atmospheric pressure. The dimethylformamide solution is poured onto water. The product, 1-[2,4-dichloro-/3-(p-chlorobenzyloxy)phenethyl] imidazole, is extracted with benzene. The extract is washed with water, dried, filtered and evaporated in vacuo. From the residual oily free base, the nitrate salt is prepared in the usual manner in 2-propanol by treatment with concentrated nitric acid, yielding, after recrystallization of the crude solid salt from a mixture of 2-propanol, methanol and diisopropylether, 1-[2,4-dichloro-/3-(p-chlorobenzyl-oxylphenethyl] imidazole nitrate MP 162°C. [Pg.552]

Phenol is also a precursor for anihne. The major process for aniline (C6H5NH2) is the hydrogenation of nitrohenzene (see Nitration of Benzene ). [Pg.275]

Toluene (methylbenzene) is similar to benzene as a mononuclear aromatic, but it is more active due to presence of tbe electron-donating metbyl group. However, toluene is much less useful than benzene because it produces more polysubstituted products. Most of tbe toluene extracted for cbemical use is converted to benzene via dealkylation or disproportionation. Tbe rest is used to produce a limited number of petro-cbemicals. Tbe main reactions related to tbe cbemical use of toluene (other than conversion to benzene) are the oxidation of the methyl substituent and the hydrogenation of the phenyl group. Electrophilic substitution is limited to the nitration of toluene for producing mono-nitrotoluene and dinitrotoluenes. These compounds are important synthetic intermediates. [Pg.284]


See other pages where Benzene, hydrogenation nitration is mentioned: [Pg.467]    [Pg.434]    [Pg.81]    [Pg.8]    [Pg.53]    [Pg.188]    [Pg.14]    [Pg.467]    [Pg.661]    [Pg.22]    [Pg.169]    [Pg.176]    [Pg.490]    [Pg.482]    [Pg.51]    [Pg.344]    [Pg.171]    [Pg.397]    [Pg.464]    [Pg.394]    [Pg.490]    [Pg.274]    [Pg.1541]    [Pg.263]    [Pg.195]    [Pg.8]    [Pg.221]    [Pg.7]    [Pg.489]    [Pg.695]    [Pg.919]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Benzene hydrogenation

Benzene nitration

Hydrogen nitrate

Hydrogenation nitrates

Nitrations benzene

© 2024 chempedia.info