Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Batch reactor thermal stability

Peaking and Non-isothermal Polymerizations. Biesenberger a (3) have studied the theory of "thermal ignition" applied to chain addition polymerization and worked out computational and experimental cases for batch styrene polymerization with various catalysts. They define thermal ignition as the condition where the reaction temperature increases rapidly with time and the rate of increase in temperature also increases with time (concave upward curve). Their theory, computations, and experiments were for well stirred batch reactors with constant heat transfer coefficients. Their work is of interest for understanding the boundaries of stability for abnormal situations like catalyst mischarge or control malfunctions. In practice, however, the criterion for stability in low conversion... [Pg.75]

In addition to the analysis of the thermal stability of the perchloric acid organic reaction media mixtures, a procedure was worked out to determine the fate of the perchloric acid by chlorine analysis of the batch, effluent streams, etc. Preliminary analyses on selected process samples showed no tendency for perchloric acid to concentrate in recycle material and therefore build up in the reactor. A total of less than 1% of the initial charge of perchloric acid (total chlorides calculated as perchloric acid) was found in the combined recovered acid-ester and olefin fractions. Less than 1 % of the initial charge of perchloric acid was found in the finished ester. The analytical method used was an oxygen bomb decomposition, followed by titration of chlorides with 0.0liV silver nitrate, using a recording automatic titrator. The eventual fate of the perchloric acid catalyst was... [Pg.79]

A general method for assessing the thermal stability of chemical batch reactors by sensitivity calculation based on Lyapunov exponents. Chemical Engineering Science, 49, 2681-8. [Pg.117]

An exothermal reaction is to be performed in the semi-batch mode at 80 °C in a 16 m3 water cooled stainless steel reactor with heat transfer coefficient U = 300 Wm"2 K . The reaction is known to be a bimolecular reaction of second order and follows the scheme A + B —> P. The industrial process intends to initially charge 15 000 kg of A into the reactor, which is heated to 80 °C. Then 3000 kg of B are fed at constant rate during 2 hours. This represents a stoichiometric excess of 10%.The reaction was performed under these conditions in a reaction calorimeter. The maximum heat release rate of 30Wkg 1 was reached after 45 minutes, then the measured power depleted to reach asymptotically zero after 8 hours. The reaction is exothermal with an energy of 250 kj kg-1 of final reaction mass. The specific heat capacity is 1.7kJ kg 1 K 1. After 1.8 hours the conversion is 62% and 65% at end of the feed time. The thermal stability of the final reaction mass imposes a maximum allowed temperature of 125 °C The boiling point of the reaction mass (MTT) is 180 °C, its freezing point is 50 °C. [Pg.176]

Thus, the equations describing the thermal stability of batch reactors are written, and the relevant dimensionless groups are singled out. These equations have been used in different forms to discuss different stability criteria proposed in the literature for adiabatic and isoperibolic reactors. The Semenov criterion is valid for zero-order kinetics, i.e., under the simplifying assumption that the explosion occurs with a negligible consumption of reactants. Other classical approaches remove this simplifying assumption and are based on some geometric features of the temperature-time or temperature-concentration curves, such as the existence of points of inflection and/or of maximum, or on the parametric sensitivity of these curves. [Pg.5]

In the second part of the chapter, the mathematical model of the BR has been augmented by considering its behavior in the presence of significant thermal effects and of a proper heat exchange apparatus. In particular, modeling these aspects brings the reader to understand the need for considering the thermal stability of batch reactors (Chap. 4) and the need for adequate systems of automatic temperature control (Chap. 5). [Pg.37]

In addition, significant advances have been made in both basic and applied research which allow a smart and efficient solution to most of these problems. As an example, let us quote the development of the synthesis of novel catalytic materials with tailor-made and more suitable characteristics (stable nanocrystals, controlled hydrophobicity, better thermal and/or mechanical stability, etc.), the understanding of the complex phenomena involved in the catalytic transformation of polar molecules within zeolite micropores or the demonstration that fixed bed reactors, which have many advantages over conventional batch reactors, can be easily used, even for liquid-phase reactions and even for laboratory scale experiments. [Pg.64]

Catalytic reactions can take place in either the liquid or vapor phase. Liquid phase reactions can be run in either a continuous manner or as a batch process while vapor phase reactions are run only in a continuous mode. In a batch reaction the catalyst, reactants, and other components of the reaction mixture are placed in an appropriate reaction vessel, the reaction is run and the products removed from the vessel and separated from the catalyst. In a continuous system the reactants are passed through the catalyst and the products removed at the same rate as the reactants are added. The applicability of vapor phase processes is limited by the volatility and thermal stability of the reactants and products so such processes are not commonly involved in the preparation of even moderately complex molecules. Because of this, primary attention will be placed here on liquid phase processes with vapor phase systems of secondary importance. A discussion of the different types of reactors used for each of these processes is found in the following chapter. The present discussion is concerned with the effect that the different reaction parameters can have on the outcome of a catalytic reaction. [Pg.67]

Thermal stability of chemical reactors is a classic yet active area within chemical engineering science. Considerable research has focused on determining safe operating criteria for batch, CSTR, and tubular reactors. Current work has been directed towards understanding thermal stability in the presence of multiple phases (fluid/solid and gas/liquid) and multiple reactions with realistic, complex reaction rates expressions. The advent of computational methods has allowed for this field to continue to thrive. A sound understanding of these principles may help improve industrial reactor performance by reducing waste and costly separation operations and help maintain a clean environment. [Pg.3005]

The reactor stability decreases with increasing values of a, since the fraction converted at the peak temperature is lower when ATa j is higher. One study showed that the allowable value of 9 for a first-order reaction ranged from 2.4 to 1.1 as a increased from about 7 to 70 [11,12]. There have been many other studies of the stability of tubular reactors and batch reactors, and some complex correlations for the stability limit allowing for changes in coolant temperature with length and the thermal capacity of the reactor wall [13]. However, it is generally not necessary to get the exact stability limit. The conservative criterion that 6> < 1 is often used unless calculations for different conditions show that even with 9 > the reactor is definitely stable to all likely disturbances. [Pg.193]

For the combined EDS-batch SCWO, a variety of technical issues must be addressed the choice of materials of construction, the method used to introduce oxidant into the vessel, the durability of seals, the stability of SCWO reactions in a large-diameter vessel, the methods used to heat the vessel, the possibility of scaling and corrosion under batch SCWO conditions (salts are proposed to be captured in apan placed in the vessel, but this has not yet been demonstrated), the method used to fabricate the vessel (e.g., single forging vs. welded sections), the impact of repeated explosions followed by thermal and pressure cycles on the integrity of the EDS vessel and SCWO reactor (e.g., crack propagation), the most appropriate method of cooldown and depressurization following munition destruction, and the disposition of process residuals. [Pg.56]


See other pages where Batch reactor thermal stability is mentioned: [Pg.120]    [Pg.599]    [Pg.283]    [Pg.280]    [Pg.950]    [Pg.599]    [Pg.3]    [Pg.5]    [Pg.71]    [Pg.199]    [Pg.547]    [Pg.283]    [Pg.2342]    [Pg.2997]    [Pg.2999]    [Pg.599]    [Pg.206]    [Pg.747]    [Pg.28]    [Pg.902]    [Pg.166]    [Pg.197]    [Pg.602]    [Pg.81]    [Pg.49]    [Pg.36]   
See also in sourсe #XX -- [ Pg.69 , Pg.70 , Pg.71 , Pg.72 , Pg.73 , Pg.74 , Pg.75 , Pg.76 , Pg.77 , Pg.78 , Pg.79 , Pg.80 , Pg.81 , Pg.82 , Pg.83 , Pg.84 , Pg.85 , Pg.86 ]




SEARCH



Batch reactor

Reactor stability

Reactor thermal stability

Reactors batch reactor

Thermal reactors

© 2024 chempedia.info