Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Batch efficiency

Year Method Maintenance Cycle (days) Manpower (manpower/ batch) Maintenance Days (days/batch) Maintenance Cells (cells/batch) Efficiency of Maintenance (cell /manpower)... [Pg.248]

Batch processes can be synthesized by first synthesizing a continuous process and then converting it to batch operation. The process yield is an important measure of both raw materials efficiency and environmental impact. [Pg.126]

Flow injection analysis (FIA) was developed in the mid-1970s as a highly efficient technique for the automated analyses of samples. °> Unlike the centrifugal analyzer described earlier in this chapter, in which samples are simultaneously analyzed in batches of limited size, FIA allows for the rapid, sequential analysis of an unlimited number of samples. FIA is one member of a class of techniques called continuous-flow analyzers, in which samples are introduced sequentially at regular intervals into a liquid carrier stream that transports the samples to the detector. ... [Pg.649]

Isothermal polymerizations are carried out in thin films so that heat removal is efficient. In a typical isothermal polymerization, aqueous acrylamide is sparged with nitrogen for 1 h at 25°C and EDTA (C2QH2 N20g) is then added to complex the copper inhibitor. Polymerization can then be initiated as above with the ammonium persulfate—sodium bisulfite redox couple. The batch temperature is allowed to rise slowly to 40°C and is then cooled to maintain the temperature at 40°C. The polymerization is complete after several hours, at which time additional sodium bisulfite is added to reduce residual acrylamide. [Pg.142]

Most manufacturing equipment should be made of stainless steel. The liming tanks, however, can be either concrete or wood (qv). Properly lined iron tanks are often used for the washing and acidification, ie, souring, operations. Most gelatin plants achieve efficient processes by operating around the clock. The product is tested in batches and again as blends to confirm conformance to customer specifications. [Pg.207]

Control Devices. Control devices have advanced from manual control to sophisticated computet-assisted operation. Radiation pyrometers in conjunction with thermocouples monitor furnace temperatures at several locations (see Temperature measurement). Batch tilting is usually automatically controlled. Combustion air and fuel are metered and controlled for optimum efficiency. For regeneration-type units, furnace reversal also operates on a timed program. Data acquisition and digital display of operating parameters are part of a supervisory control system. The grouping of display information at the control center is typical of modem furnaces. [Pg.306]

Efficiency of Intermediate Formation. The variation of the efficiency of a primary intermediate with conversion of the feed hydrocarbon can be calculated (22). Ratios of the propagation rate constants ( 2 / i) reactor type (batch or plug-flow vs back-mixed) are important parameters. [Pg.337]

Eigure 2 shows that even materials which are rather resistant to oxidation ( 2/ 1 0.1) are consumed to a noticeable degree at high conversions. Also the use of plug-flow or batch reactors can offer a measurable improvement in efficiencies in comparison with back-mixed reactors. Intermediates that cooxidize about as readily as the feed hydrocarbon (eg, ketones with similar stmcture) can be produced in perhaps reasonable efficiencies but, except at very low conversions, are subject to considerable loss through oxidation. They may be suitable coproducts if they are also precursors to more oxidation-resistant desirable materials. Intermediates which oxidize relatively rapidly (/ 2 / i — 3-50 eg, alcohols and aldehydes) are difficult to produce in appreciable amounts, even in batch or plug-flow reactors. Indeed, for = 50, to isolate 90% or more of the intermediate made, the conversion must... [Pg.337]

Eig. 2. Efficiency to a primary intermediate as % of maximum (zero conversion) efficiency x axis is feed conversion. Parameters are oxidation rate-constant ratios ( 2 / i) for primary intermediate vs feed and reactor type A, plug-flow or batch B, back-mixed. [Pg.337]

Manufacture. Phosphoms pentachloride is manufactured by either batch or continuous processing. In the former, the phosphoms trichloride usually dissolves in carbon tetrachloride before being treated with chlorine. A mixture of ca one part of phosphoms trichloride to one part of carbon tetrachloride is introduced to a water-jacketed vessel that contains an efficient stirrer and a tight cover with a redux condenser. The chlorine is passed into the vessel below the Hquid level, and crystals of phosphoms pentachloride form in the Hquid. When the reaction is completed, the suspension of crystals of phosphoms pentachloride in the carbon tetrachloride is drawn out of the vessel and the crystals are filtered and then dried by circulating hot water through the jacket of the filter. The clarified carbon tetrachloride is returned to the reaction vessel. [Pg.371]

The complex batch reactor is a specialized pressure vessel with excellent heat transfer and gas Hquid contacting capabiUty. These reactors are becoming more common in aLkylphenol production, mainly due to their high efficiency and flexibiUty of operation. Figure 2 shows one arrangement for a complex batch reactor. Complex batch reactors produce the more difficult to make alkylphenols they also produce some conventional alkylphenols through improved processes. [Pg.63]


See other pages where Batch efficiency is mentioned: [Pg.133]    [Pg.91]    [Pg.5]    [Pg.5]    [Pg.461]    [Pg.475]    [Pg.461]    [Pg.133]    [Pg.91]    [Pg.5]    [Pg.5]    [Pg.461]    [Pg.475]    [Pg.461]    [Pg.1099]    [Pg.266]    [Pg.295]    [Pg.12]    [Pg.126]    [Pg.129]    [Pg.530]    [Pg.64]    [Pg.182]    [Pg.304]    [Pg.304]    [Pg.304]    [Pg.304]    [Pg.306]    [Pg.306]    [Pg.344]    [Pg.432]    [Pg.520]    [Pg.123]    [Pg.168]    [Pg.64]    [Pg.64]    [Pg.513]    [Pg.38]    [Pg.208]    [Pg.209]    [Pg.262]    [Pg.560]    [Pg.414]    [Pg.156]    [Pg.496]    [Pg.537]   
See also in sourсe #XX -- [ Pg.37 , Pg.38 ]




SEARCH



© 2024 chempedia.info