Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bases coulometric titration

A. Cladera, A., et. al., A fully-automated system for acid-base coulometric titrations, J. Autoin. Chem. 12 (6), 258-62 (1990). [Pg.364]

Coupling the mediator s oxidation or reduction to an acid-base, precipitation, or complexation reaction involving the analyte allows for the coulometric titration of analytes that are not easily oxidized or reduced. For example, when using H2O as a mediator, oxidation at the anode produces H3O+... [Pg.503]

Representative Examples of Coulometric Titrations Using Acid-Base, Complexation, and Precipitation Reactions... [Pg.504]

Coulometric titration. For this technique, often designated controlled-current or amperostatic coulometry, it is useful to distinguish between redox, complex-formation and precipitation titrations on the one hand and acid-base titrations on the other and to discuss each group separately. [Pg.310]

Coulometric titrations ale quantitative methods based on constant... [Pg.186]

The ISFET-based integrated coulometric sensor-actuator system was introduced in 1985 [154] in order to facilitate in situ calibration of ISFETs. The essential components of a prototype sensor based on this operational principle are shown in Fig. 4.20.B. The system was built by integrating a large noble-metal actuator electrode and a counter-electrode in a piece of silicon. A window in the actuator electrode was etched to receive the gate of the ISFET, which functioned as a pH indicator. The flow-through cell was constructed by sealing a silicon cover with an etched cavity of the chip. The system operation resembles that of a conventional coulometric titration system very closely. The sample was first injected into the cavity and the... [Pg.251]

The Karl Fischer titration is a specialised type of coulometric titration. Coloumetry itself is a useful technique, but is not used as a mainstream technique for pharmaceutical analysis. Essentially coulometry is based on the electrolytic reduction of the analyte, i.e. the analyte is reduced by electrons supplied by a source of electrical power and the amount of charge passed in order to convert the analyte to its reduced form is equivalent to the amount of analyte present in solution. [Pg.68]

Some of the reasons for considering coulometric titrations in nonaqueous solvents are that many organic compounds are not soluble in water, metals can exist in oxidation states that are not found in water, and advantage can be taken of the acidity or basicity of the solvent to improve the basic or acidic strength of a base or acid, respectively. [Pg.762]

Coulometric titrations have been employed for redox, acid-base, precipitation, and complexation titrations of organics and inorganics in both aqueous... [Pg.777]

The coulometric titration of weak bases with electrogenerated H+ has been successful for nicotinamide, sodium salicylate, metronidazole, sodium veronal, isonicotinic acid, and other compounds, in 0.1 M sodium perchlorate in a mixture of acetic acid and acetic anhydride (1 6) [47]. The endpoint of the titration was noted photometrically using a malachite green indicator. Approximately 5 mg of each compound was determined with an average deviation of 0.3%. [Pg.781]

Coulometric titration procedures have been developed for a great number of oxidation-reduction, acid-base, precipitation, and complexation reactions. The sample systems as well as the electrochemical intemediates used for them are summarized in Table 4.1, and indicate the diversity and range of application for the method. An additional specialized form of coulometric titration involves the use of a spent Karl Fischer solution as the electrochemical intermediate for the determination of water at extremely low levels. For such a system the anode reaction regenerates iodine, which is the crucial component of the Karl Fischer titrant. This then reacts with the water in the sample system according to the... [Pg.153]

Both the automatic coulometric titration of petroleum streams and the continuous monitoring of pesticides and sulfur-halogen compounds indicate that the coulometric titrator method is amenable to the automatic maintenance of the concentration of a component in a solution system. A manual version of this approach has been used to study the kinetics of hydrogenation of olefins as well as to determine the rate of hydrolysis of esters.12 The latter system is a pH-stat that is based on the principles of coulometric titrations. Equations (4.9)-(4.11) indicate how this approach is applied to the evaluation of the rate constants for ester hydrolysis. A similar approach could be used to develop procedures for kinetic studies that involve most of the electrochemical intermediates summarized in Table 4.1. The coulometric titration method provides a convenient means to extend the range of systems that can be subjected to kinetic study in solution. [Pg.159]

As for the permeability measurements, most techniques based on the analysis of transient behavior of a mixed conducting material [iii, iv, vii, viii] make it possible to determine the ambipolar diffusion coefficients (- ambipolar conductivity). The transient methods analyze the kinetics of weight relaxation (gravimetry), composition (e.g. coulometric -> titration), or electrical response (e.g. conductivity -> relaxation or potential step techniques) after a definite change in the - chemical potential of a component or/and an -> electrical potential difference between electrodes. In selected cases, the use of blocking electrodes is possible, with the limitations similar to steady-state methods. See also - relaxation techniques. [Pg.155]

The material for the actuator has to be selected on the basis of the titrant to be generated. For the titration of an acid or base, a noble metal electrode is usually adopted. A constant current is often used in the coulometric titration, and the quantity of charge is then calculated by the time of the electrolysis. The analyte can either be an acid or a base. If there are no other interfering redox couples, the titrant generated at the electrodes depends on the direction of the applied current ... [Pg.385]

The simplest methods of HTSC analysis are based on the determination of the products of sample dissolution in acidic media. Potentiometric, amperometric, or coulometric titrations are frequently used (mainly for YBCO ceramics [525-527] and their analogs with other rare-earth elements [528, 529], and also for BSCCO [530]). We note particularly the method of potentiostatic coulometric analysis [531], which allows one to analyze thallium cuprate samples over a wide range of the Tl/Cu ratio, and also the method of flow-through coulometry for determining the effective valence of copper [532]. The polarographic determination of Cu content in the samples obtained by dissolving HTSCs in concentrated alkaline solutions with special... [Pg.104]

Titrations are widely used in analytical chemistry to determine acids, bases, oxidants, reductants, metal ions, proteins, and many other species. Titrations are based on a reaction between the analyte and a standard reagent known as the titrant. The reaction is of known and reproducible stoichiometry. The volume, or the mass, of the titrant needed to react essentially completely with the analyte is determined and used to obtain the quantity of analyte. A volume-based titration is shown in this figure, in which the standard solution is added from a buret, and the reaction occurs in the Erlenmeyer flask. In some titrations, known as coulometric titrations, the quantity of charge needed to completely consume the analyte is obtained. In any titration, the point of chemical equivalence, experimentally called the end point, is signaled by an indicator color change or a change in an instrumental response. [Pg.337]

Current Sources The constant-current source for a coulometric titration is an electronic device capable of maintaining a current of 200 mA or more that is constant to a few hundredths of a percent. Such constant-current sources are available from several instrument manufacturers. The electrolysis time can be measured very accurately with a digital timer or a computer-based timing system. [Pg.655]

Hydrogen ions generated at the surface of a platinum anode can be used for the coulometric titration of strong as well as weak bases ... [Pg.657]

A number of instrument manufacturers offer automatic coulometric titrators, most of which employ a potentiometric end point. Some of these instruments are multipurpose and can be used for the determination of a variety of species. Others are designed for a single type of analysis. Examples of the latter are chloride titrators, in which silver ion is generated coulometrically sulfur dioxide monitors, where anodically generated bromine oxidizes the analyte to sulfate ions carbon dioxide monitors, in which the gas, absorbed in monoethanolamine, is titrated with coulometrically generated base and water titrators, in which Karl Fischer reagent (see Section 20C-5) is generated electrolytically. [Pg.660]

A proper description of electronic defects in terms of simple point defect chemistry is even more complicated as the d electrons of the transition metals and their compounds are intermediate between localized and delocalized behaviour. Recent analysis of the redox thermodynamics of Lao.8Sro,2Co03. based upon data from coulometric titration measurements supports itinerant behaviour of the electronic charge carriers in this compound [172]. The analysis was based on the partial molar enthalpy and entropy of the oxygen incorporation reaction, which can be evaluated from changes in emf with temperature at different oxygen (non-)stoichiometries. The experimental value of the partial molar entropy (free formation entropy) of oxygen incorporation, Asq, could be... [Pg.487]


See other pages where Bases coulometric titration is mentioned: [Pg.311]    [Pg.311]    [Pg.504]    [Pg.544]    [Pg.673]    [Pg.238]    [Pg.240]    [Pg.310]    [Pg.311]    [Pg.362]    [Pg.190]    [Pg.219]    [Pg.252]    [Pg.209]    [Pg.53]    [Pg.749]    [Pg.755]    [Pg.763]    [Pg.763]    [Pg.782]    [Pg.7]    [Pg.327]    [Pg.153]    [Pg.122]    [Pg.299]    [Pg.283]    [Pg.389]    [Pg.404]    [Pg.651]   
See also in sourсe #XX -- [ Pg.658 ]




SEARCH



Acid-base reactions using coulometric titrations

Bases titrations

Coulometr

Coulometric

Coulometric titrations

© 2024 chempedia.info