Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bases, adsorption inorganic

The major processes affecting the geochemical fate of hazardous inorganics are acid-base adsorption-desorption, precipitation-dissolution, complexation, hydrolysis, oxidation-reduction, and catalytic reactions. The significance of these processes to inorganic wastes is discussed only briefly here additional information on individual elements is given in Table 20.16. [Pg.819]

Heats of Adsorption of Acids and Bases on Inorganic Surfaces... [Pg.80]

New areas in adsorption technology include carbonaceous and polymeric resins (3). Based on synthetic organic polymer materials, these resins may find special uses where compound selectivity is important, low effluent concentrations are required, carbon regeneration is impractical, or the waste to be treated contains high levels of inorganic dissolved soHds. [Pg.161]

With the help of equiUbrium constants, the extent of adsorption can be predicted as a function of pH and solution variables (7,25,43). Based on this model, the partitioning of metal ions and of ligands (organic and inorganic anions between water and pelagic clays and suspended particles) can be explained. [Pg.218]

Materials of Construction. GeneraHy, carbon steel is satisfactory as a material of construction when handling propylene, chlorine, HCl, and chlorinated hydrocarbons at low temperatures (below 100°C) in the absence of water. Nickel-based aHoys are chiefly used in the reaction area where resistance to chlorine and HCl at elevated temperatures is required (39). Elastomer-lined equipment, usuaHy PTFE or Kynar, is typicaHy used when water and HCl or chlorine are present together, such as adsorption of HCl in water, since corrosion of most metals is excessive. Stainless steels are to be avoided in locations exposed to inorganic chlorides, as stainless steels can be subject to chloride stress-corrosion cracking. Contact with aluminum should be avoided under aH circumstances because of potential undesirable reactivity problems. [Pg.34]

The observed complexity of the Se(IV) electrochemistry due to adsorption layers, formation of surface compounds, coupled chemical reactions, lack of electroactivity of reduction products, and other interrelated factors has been discussed extensively. Zuman and Somer [31] have provided a thorough literature-based review with almost 170 references on the complex polarographic and voltammetric behavior of Se(-i-IV) (selenous acid), including the acid-base properties, salt and complex formation, chemical reduction and reaction with organic and inorganic... [Pg.70]

Density Functional Theory (DFT) has shown that low-coordinated sites on the gold nanoparticles can adsorb small inorganic molecules such as O2 and CO, and the presence of these sites is the key factor for the catal5dic properties of supported gold nanoclusters. Other contributions, induced by the presence of the support, can provide parallel channels for the reaction and modulate the final efficiency of Au-based catalysts. Also these calculations extended for the adsorption of O and CO on flat and... [Pg.97]

Acid-base, hydrolysis, hydration, neutralization, oxidation-reduction, polymerization, thermal degradation Adsorption-desorption, precipitation-dissolution, immiscible-phase separation, biodegradation, complexation Acid-base, neutralization, oxidation-reduction (most inorganic and some biologically mediated), adsorption-desorption, precipitation-dissolution, complexation Hydrolysis, oxidation-reduction (biodegradation of anthropogenic inorganics), immiscible-phase separation... [Pg.792]

Acid-base equilibrium is very important to inorganic chemical reactions. Adsorption-desorption and precipitation-dissolution reactions are also of major importance in assessing the geochemical fate of deep-well-injected inorganics. Interactions between and among metals in solution and solids in the deep-well environment can be grouped into four types1 2 3 4 ... [Pg.819]

Figure 15.4(A) shows the effect of the R = Zn2+/Al3+ ratio, which determines the charge density of the LDH layer, on the Freundlich adsorption isotherms. K values are far higher than those measured for smectite or other inorganic matrices. The increase in Kf with the charge density (Kf= 215, 228, 325mg/g, respectively, for R = 4, 3 and 2) is supported by a mechanism of adsorption based on an anion exchange reaction. The desorption isotherms confirm that urease is chemically adsorbed by the LDH surface. The aggregation of the LDH platelets can affect noticeably their adsorption capacity for enzymes and the preparation of LDH adsorbant appears to be a determinant step for the immobilization efficiency. [ZnRAl]-urease hybrid LDH was also prepared by coprecipitation with R = 2, 3 and 4 and Q= urease/ZnRAl from 1 /3 up to 2.5. For Q < 1.0,100 % of the urease is retained by the LDH matrix whatever the R value while for higher Q values an increase in the enzyme/LDH weight ratio leads to a decrease in the percentage of the immobilized amount. Figure 15.4(A) shows the effect of the R = Zn2+/Al3+ ratio, which determines the charge density of the LDH layer, on the Freundlich adsorption isotherms. K values are far higher than those measured for smectite or other inorganic matrices. The increase in Kf with the charge density (Kf= 215, 228, 325mg/g, respectively, for R = 4, 3 and 2) is supported by a mechanism of adsorption based on an anion exchange reaction. The desorption isotherms confirm that urease is chemically adsorbed by the LDH surface. The aggregation of the LDH platelets can affect noticeably their adsorption capacity for enzymes and the preparation of LDH adsorbant appears to be a determinant step for the immobilization efficiency. [ZnRAl]-urease hybrid LDH was also prepared by coprecipitation with R = 2, 3 and 4 and Q= urease/ZnRAl from 1 /3 up to 2.5. For Q < 1.0,100 % of the urease is retained by the LDH matrix whatever the R value while for higher Q values an increase in the enzyme/LDH weight ratio leads to a decrease in the percentage of the immobilized amount.
Some differences in arsenate and chromate adsorption on ODA-clinoptilolite and Pb-(Ag-linoptilolites) as well were recorded (Figs. 5 and 6). ODA-clinoptilolite exhibited more efficient arsenate and chromate removal from aqueous solutions than the inorganically exchanged modifications. However, silver exchanged clinoptilolite revealed higher capacity values for both oxyanions uptake than lead exchanged clinoptilolite did. This phenomenon supports preferred silver treated clinoptilolite utilization for specific water purification process even on the base of environmental acceptability. [Pg.21]

Chemical relaxation methods can be used to determine mechanisms of reactions of ions at the mineral/water interface. In this paper, a review of chemical relaxation studies of adsorption/desorption kinetics of inorganic ions at the metal oxide/aqueous interface is presented. Plausible mechanisms based on the triple layer surface complexation model are discussed. Relaxation kinetic studies of the intercalation/ deintercalation of organic and inorganic ions in layered, cage-structured, and channel-structured minerals are also reviewed. In the intercalation studies, plausible mechanisms based on ion-exchange and adsorption/desorption reactions are presented steric and chemical properties of the solute and interlayered compounds are shown to influence the reaction rates. We also discuss the elementary reaction steps which are important in the stereoselective and reactive properties of interlayered compounds. [Pg.230]

Based on their molecular properties as well as the properties of the solvent, each inorganic or organic contaminant exhibits an adsorption isotherm that corresponds to one of the isotherm classifications just described. Figure 5.1 illustrates these isotherms for different organic contaminants, adsorbed either from water or hexane solution on kaolinite, attapulgite, montmorillonite, and a red Mediterranean soil (Yaron et al. 1996). These isotherms may be used to deduce the adsorption mechanism. [Pg.97]

That the reduction takes place at the surface, receives support from an experiment in which the extent of reduction of various Fe oxides by Shewanella alga after 30 days was linearly correlated with the SAbet the exception was 2-line ferrihydrite for which a surface area of 600 m /g had to be assumed in order to fit the relationship (Roden Zachara, 1996). Although experimental (BET) surface areas of ferrihydrite are substantially lower than 600 m /g, calculated values based on particle size as well as those determined from ligand adsorption experiments (see Table 5.1) are in this range. Dissolved Fe was found to create a lag phase in the reduction process (in contrast to the behaviour in inorganic systems) because Fe is adsorbed at the cell surface (Liu et al. 2001). This effect can be overcome by complexing the Fe (e. g. [Pg.320]


See other pages where Bases, adsorption inorganic is mentioned: [Pg.89]    [Pg.652]    [Pg.246]    [Pg.144]    [Pg.1541]    [Pg.258]    [Pg.249]    [Pg.161]    [Pg.405]    [Pg.487]    [Pg.29]    [Pg.122]    [Pg.200]    [Pg.453]    [Pg.475]    [Pg.475]    [Pg.559]    [Pg.50]    [Pg.511]    [Pg.480]    [Pg.132]    [Pg.174]    [Pg.150]    [Pg.415]    [Pg.118]    [Pg.64]    [Pg.27]    [Pg.20]    [Pg.128]    [Pg.143]    [Pg.396]    [Pg.131]    [Pg.745]    [Pg.66]    [Pg.325]    [Pg.87]   
See also in sourсe #XX -- [ Pg.224 , Pg.367 ]




SEARCH



Acid-base interactions adsorption inorganic surface

Bases, adsorption

Inorganic bases

© 2024 chempedia.info