Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Band intensities selection rules

Often it is possible to resolve vibrational structure of electronic transitions. In this section we will briefly review the symmetry selection rules and other factors controlling the intensity of individual vibronic bands. [Pg.1137]

The synnnetry selection rules discussed above tell us whether a particular vibronic transition is allowed or forbidden, but they give no mfonnation about the intensity of allowed bands. That is detennined by equation (Bl.1.9) for absorption or (Bl.1.13) for emission. That usually means by the Franck-Condon principle if only the zero-order tenn in equation (B 1.1.7) is needed. So we take note of some general principles for Franck-Condon factors (FCFs). [Pg.1138]

If the experunental technique has sufficient resolution, and if the molecule is fairly light, the vibronic bands discussed above will be found to have a fine structure due to transitions among rotational levels in the two states. Even when the individual rotational lines caimot be resolved, the overall shape of the vibronic band will be related to the rotational structure and its analysis may help in identifying the vibronic symmetry. The analysis of the band appearance depends on calculation of the rotational energy levels and on the selection rules and relative intensity of different rotational transitions. These both come from the fonn of the rotational wavefunctions and are treated by angnlar momentum theory. It is not possible to do more than mention a simple example here. [Pg.1139]

Consider now spin-allowed transitions. The parity and angular momentum selection rules forbid pure d d transitions. Once again the rule is absolute. It is our description of the wavefunctions that is at fault. Suppose we enquire about a d-d transition in a tetrahedral complex. It might be supposed that the parity rule is inoperative here, since the tetrahedron has no centre of inversion to which the d orbitals and the light operator can be symmetry classified. But, this is not at all true for two reasons, one being empirical (which is more of an observation than a reason) and one theoretical. The empirical reason is that if the parity rule were irrelevant, the intensities of d-d bands in tetrahedral molecules could be fully allowed and as strong as those we observe in dyes, for example. In fact, the d-d bands in tetrahedral species are perhaps two or three orders of magnitude weaker than many fully allowed transitions. [Pg.65]

In EMIRS and SNIFTIRS measurements the "inactive" s-polarlsed radiation is prevented from reaching the detector and the relative intensities of the vibrational bands observed in the spectra from the remaining p-polarised radiation are used to deduce the orientation of adsorbed molecules. It should be pointed out, however, that vibrational coupling to adsorbate/adsorbent charge transfer (11) and also w electrochemically activated Stark effect (7,12,13) can lead to apparent violations of the surface selection rule which can invalidate simple deductions of orientation. [Pg.552]

Thus the IR active modes will be determined by the matrix elements of the polarlsablllty matrix and not by a combination of the surface selection rule and the normal IR selection rules l.e. all of the Raman active modes could become accessible. This effect has been formalized and Its significance assessed In a discussion (12) which compares Its magnitude for a number of different molecules. In the case of acrylonitrile adsorption discussed In the previous section, the Intensity of the C=N stretch band appears to vary with the square of the electric field strength as expected for the Stark effect mechanism. [Pg.564]

In the first case, the difference in intensities Ip — Is is computed. Due to the surface selection rule, what results is a spectrum showing absorption bands of species on the surface. [Pg.135]

In collaboration with E.L. Sibert, we have learned to interpret these Franck-Con-don forbidden, pure torsional band intensities in S,-S0 absorption spectra quantitatively and thus place the key ml+ assignment on firm ground.27 The forbidden bands follow the selection rule Am = 3, so we need a perturbation of the form Vel cos 3a. Working in an adiabatic representation with the S0 and S, electronic states denoted by y0(g a) and /,( a) and the torsional states by m" and m, the electric dipole transition moment is,... [Pg.168]

The surface selection rule operates in addition to the normal IR selection rules in determining which vibrational modes are observed. As a result of the SSR the relative intensities of the fundamental IR adsorption bands of an adsorbed species can be used to give information on the orientation of the species with respect to the surface. Both S- and P-polarised light interact equally with the randomly oriented solution species. [Pg.102]

Some characteristics of, and comparisons between, surface-enhanced Raman spectroscopy (SERS) and infrared reflection-absorption spectroscopy (IRRAS) for examining reactive as well as stable electrochemical adsorbates are illustrated by means of selected recent results from our laboratory. The differences in vibrational selection rules for surface Raman and infrared spectroscopy are discussed for the case of azide adsorbed on silver, and used to distinguish between "flat" and "end-on" surface orientations. Vibrational band intensity-coverage relationships are briefly considered for some other systems that are unlikely to involve coverage-induced reorientation. [Pg.303]

Spin selection rule The spin selection rule, AS = 0, specifies that there should be no change in the spin multiplicity. Weak spin-forbidden bands may occur when spin-orbit coupling is possible. Spin-forbidden transitions are more intense in complexes of heavy atoms as these lead to a larger spin-orbit coupling. [Pg.45]

Raman and IR spectroscopies are complementary to each other because of their different selection rules. Raman scattering occurs when the electric field of light induces a dipole moment by changing the polarizability of the molecules. In Raman spectroscopy the intensity of a band is linearly related to the concentration of the species. IR spectroscopy, on the other hand, requires an intrinsic dipole moment to exist for charge with molecular vibration. The concentration of the absorbing species is proportional to the logarithm of the ratio of the incident and transmitted intensities in the latter technique. [Pg.22]

The strength or intensity of absorption is related to the dipole strength of transition D or square of the transition moment integral M m , and is pressed in terms of oscillator strength / or integrated molar extinction jfe Jv. A transition with /= 1, is known as totally allowed transition. But the transitions between all the electronic, vibrational or rotational states are not equally permitted. Some are forbidden which can become allowed under certain conditions and then appear as weak absorption bands. The rules which govern such transitions are known as selection rules. For atomic energy levels, these selection rules have been empirically obtained from a comparison between the number of lines theoretically... [Pg.65]


See other pages where Band intensities selection rules is mentioned: [Pg.1252]    [Pg.1252]    [Pg.309]    [Pg.2216]    [Pg.446]    [Pg.259]    [Pg.1244]    [Pg.1272]    [Pg.89]    [Pg.242]    [Pg.114]    [Pg.36]    [Pg.539]    [Pg.552]    [Pg.553]    [Pg.46]    [Pg.347]    [Pg.63]    [Pg.102]    [Pg.371]    [Pg.355]    [Pg.365]    [Pg.366]    [Pg.159]    [Pg.225]    [Pg.323]    [Pg.138]    [Pg.25]    [Pg.203]    [Pg.125]    [Pg.14]    [Pg.549]    [Pg.54]    [Pg.90]    [Pg.15]    [Pg.48]    [Pg.529]    [Pg.344]    [Pg.1106]   
See also in sourсe #XX -- [ Pg.244 ]

See also in sourсe #XX -- [ Pg.244 ]




SEARCH



Band intensities

Selection rules

Selection rules and intensities of absorption bands

Selection rules spectral band intensities

© 2024 chempedia.info