Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bacteria sulfate reducers

Reactive Orange 96 Anaerobic culture of sulfate-reducing bacteria, methanogens, and fermentative bacteria Sulfate-reducing bacteria removed 95% of the dye in 40 h. Methane producing bacteria did not contribute in dye removal. Fermentative bacteria could remove only 30% of the dye in 90 h [186]... [Pg.23]

Denitrifying bacteria Mn- or Fe-reducing bacteria Sulfate reducing bacteria Sulfate reducing bacteria Fermenting bacteria... [Pg.192]

The bacterial population faced with the "autumn-input" was derived from an anoxic population (fermentative bacteria, sulfate reducers) which prevailed during summer stagnation. Within this population the input of freshly produced organic material caused a drastic shift. Bacteria primarily reacted with a strong increase in cell volume (biomass production). Deviating from its "normal" distribution (cf. above), the size spectrum was dominated by medium and large-size cells. Following the final breakdown and sedimentation of the autumn phytoplankton bloom, the bacteria subsequently responded with cell division (increase in cell number). [Pg.151]

Use For controlling slime-forming bacteria, sulfate-reducing bacteria, and algae in water cooling towers, air washers, pasteurizers, and other recirculation water systems. [Pg.96]

Heterotroph (=chemoonganotroph) Oxidation of organic compounds Org. C (max. 30% CO2) Org. C Anaerobic Denitrifying bacteria Mn- or Fe-reducing bacteria Sulfate reducing bacteria Fermenting bacteria... [Pg.186]

There are three kinds of oil-consuming bacteria. Sulfate-reducing bacteria (SRB) and acid-producing bacteria are anaerobic, while general aerobic bacteria (GAB) are aerobic. These bacteria occur naturally and will act to remove oil from an ecosystem, and their biomass will tend to replace other populations in the food chain. [Pg.201]

Easier to achieve biological control with one product since 11-130 controls the growth of bacteria, particularly iron bacteria, sulfate reducing bacteria, and algae. [Pg.36]

Arsenic is another element with different bioavailabiUty in its different redox states. Arsenic is not known to be an essential nutrient for eukaryotes, but arsenate (As(V)) and arsenite (As(III)) are toxic, with the latter being rather more so, at least to mammals. Nevertheless, some microorganisms grow at the expense of reducing arsenate to arsenite (81), while others are able to reduce these species to more reduced forms. In this case it is known that the element can be immobilized as an insoluble polymetallic sulfide by sulfate reducing bacteria, presumably adventitiously due to the production of hydrogen sulfide (82). Indeed many contaminant metal and metalloid ions can be immobilized as metal sulfides by sulfate reducing bacteria. [Pg.36]

Although the process requires the addition of a phosphate donor, such as glycerol-2-phosphate, it may be a valuable tool for cleaning water contaminated with radionuchdes. An alternative mode of uranium precipitation is driven by sulfate-reducing bacteria such as Desulfovibrio desulfuricans which reduce U(VI) to insoluble U(IV). When combined with bicarbonate extraction of contaminated soil, this may provide an effective treatment for removing uranium from contaminated soil (85). [Pg.37]

Water Groundwater can be treated in anaerobic bioreactors that encourage the growth of sulfate reducing bacteria, where the metals are reduced to insoluble sulfides, and concentrated in the sludge. For example, such a system is in use to decontaminate a zinc smelter site in the Netherlands (95). [Pg.37]

Various patents (22—24) have been issued claiming the use of tetrakis(hydroxymethyl)phosphonium sulfate in, for example, water treating, pharmaceuticals (qv), and in the oil industry where this compound shows exceptional activity toward the sulfate-reducing bacteria that are a primary cause of hydrogen sulfide formation and consequent problems associated with souring and corrosion (25). [Pg.320]

The manner in which many of these bacteria cany on their chemical processes is qmte comphcated and in some cases not fuUy understood. The role of sulfate-reducing bacteria (anaerobic) in promoting corrosion has been extensively investigated. The sulfates in shghtly acid to alkaline (pH 6 to 9) soils are reduced by these bacteria to form calcium sulfide and hydrogen sulfide. When these compounds come in contact with underground iron pipes, conversion of the iron to iron sulfide occurs. As these bacieria thrive under these conditions, they will continue to promote this reaction until failure of the pipe occurs. [Pg.2420]

Sulfate reducers. The best-known form of microbiologically influenced corrosion involves sulfate-reducing bacteria.- Without question, sulfate reducers cause most localized industrial cooling water corrosion associated with bacteria. Desulfovibrio, Desulfomonas, and Desulfotomacu-lum are three genera of sulfate-reducing bacteria. [Pg.121]

These bacteria are anaerobic. They may survive but not actively grow when exposed to aerobic conditions. They occur in most natural waters including fresh, brackish, and sea water. Most soils and sediments contain sulfate reducers. Sulfate or sulfite must be present for active growth. The bacteria may tolerate temperatures as high as about 176°F (80°C) and a pH from about 5 to 9. [Pg.121]

Thiobacillus thiooxidans is an aerobic organism that oxidizes various sulfur-containing compounds to form sulfuric acid. These bacteria are sometimes found near the tops of tubercles (see Chap. 3, Tubercu-lation ). There is a symbiotic relationship between Thiobacillus and sulfate reducers Thiobacillus oxidizes sulfide to sulfate, whereas the sulfate reducers convert sulfide to sulfate. It is unclear to what extent Thiobacillus directly influences corrosion processes inside tubercles. It is more likely that they indirectly increase corrosion by accelerating sulfate-reducer activity deep in the tubercles. [Pg.122]

Virtually all metallurgies can be attacked by corrosive bacteria. Cases of titanium corrosion are, however, rare. Copper alloys are not immune to bacterial attack however, corrosion morphologies on copper alloys are not well defined. Tubercles on carbon steel and common cast irons sometimes contain sulfate-reducing and acid-producing bacteria. Potentially corrosive anaerobic bacteria are often present beneath... [Pg.126]

Corrosion morphologies. Sulfate-reducing bacteria frequently cause intense localized attack (Figs. 6.2 through 6.7). Discrete hemispherical depressions form on most alloys, including stainless steels, aluminum. Carpenter 20, and carbon steels. Few cases occur on titanium. Copper alloy attack is not well defined. [Pg.128]

TABLE 6.3 Typical Microbiological Analysis at Outlet A Main Condenser Suffering No Significant Corrosion by Sulfate-Reducing Bacteria ... [Pg.129]

Figure 6.2 Severely pitted aluminum heat exchanger tube. Pits were caused hy sulfate-reducing bacteria beneath a slime layer. The edge of the slime layer is just visible as a ragged border between the light-colored aluminum and the darker, uncoated metal below. Figure 6.2 Severely pitted aluminum heat exchanger tube. Pits were caused hy sulfate-reducing bacteria beneath a slime layer. The edge of the slime layer is just visible as a ragged border between the light-colored aluminum and the darker, uncoated metal below.
Figure 6.9 Irregular deposit and corrosion-product mounds containing concentrations of sulfate-reducing bacteria on the internal surface of a 316 stainless steel transfer line carrying a starch-clay mixture used to coat paper material. Attack only occurred along incompletely closed weld seams, with many perforations. Note the heat tint, partially obscured by the deposit mounds, along the circumferential weld. Figure 6.9 Irregular deposit and corrosion-product mounds containing concentrations of sulfate-reducing bacteria on the internal surface of a 316 stainless steel transfer line carrying a starch-clay mixture used to coat paper material. Attack only occurred along incompletely closed weld seams, with many perforations. Note the heat tint, partially obscured by the deposit mounds, along the circumferential weld.
Figure 6.10 A perforated carbon steel pipe at a weld-backing ring. The gaping pit was caused by sulfate-reducing bacteria (see Case History 6.1). Figure 6.10 A perforated carbon steel pipe at a weld-backing ring. The gaping pit was caused by sulfate-reducing bacteria (see Case History 6.1).
Clostridia frequently are found where sulfate-reducing bacteria are present, often in high numbers inside tubercles. A typical microbiological analysis of tubercular material removed from a troubled service water system main is given in Table 6.4. Clostridia counts above 10 /g of material are high enough to cause concern. When acid producers... [Pg.136]


See other pages where Bacteria sulfate reducers is mentioned: [Pg.337]    [Pg.843]    [Pg.199]    [Pg.325]    [Pg.81]    [Pg.242]    [Pg.3725]    [Pg.355]    [Pg.8]    [Pg.264]    [Pg.191]    [Pg.13]    [Pg.253]    [Pg.337]    [Pg.843]    [Pg.199]    [Pg.325]    [Pg.81]    [Pg.242]    [Pg.3725]    [Pg.355]    [Pg.8]    [Pg.264]    [Pg.191]    [Pg.13]    [Pg.253]    [Pg.25]    [Pg.33]    [Pg.38]    [Pg.475]    [Pg.117]    [Pg.120]    [Pg.268]    [Pg.490]    [Pg.135]    [Pg.2421]    [Pg.46]    [Pg.121]    [Pg.123]    [Pg.128]   
See also in sourсe #XX -- [ Pg.147 , Pg.148 , Pg.332 ]




SEARCH



Bacteria reducing

Bacteria sulfated

Sulfate reducers

Sulfate reducing bacteria

© 2024 chempedia.info