Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Azomethine, 1,3 dipolar cycloaddition

Intramolecular cycloadditions are among the most efficient methods for the synthesis of fused bicyclic ring systems [30]. From this perspective, the hetisine skeleton encompasses two key retro-cycloaddition key elements. (1) a bridging pyrrolidine ring accessible via a [3+2] azomethine dipolar cycloaddition and (2) a [2.2.2] bicyclo-octane accessible via a [4+2] Diels-Alder carbocyclic cycloaddition (Chart 1.4). While intramolecular [4+2] Diels—Alder cycloadditions to form [2.2.2] bicycle-octane systems have extensive precedence [3+2], azomethine dipolar cycloadditions to form highly fused aza systems are rare [31-33]. The staging of these two operations in sequence is critical to a unified synthetic plan. As the proposed [3+2] dipolar cycloaddition is expected to be the more challenging of the two transformations, it should be conducted in an early phase in the forward synthetic direction. As a result, a retrosynthetic analysis would entail initial consideration of the [4+2] cycloaddition to arrive at the optimal retrosynthetic C-C bond disconnections for this transformation. [Pg.8]

Scheme 1.6 Azomethine dipolar cycloaddition utilizing desilylation... Scheme 1.6 Azomethine dipolar cycloaddition utilizing desilylation...
Asymmetric dipolar cycloaddition of azomethine imines derived from diazoal-kane-pyridazine cycloadducts 98JHC1187. [Pg.260]

Diethylamino-4-(4-methoxyphenyl)-isothiazole 5,5-dioxide 6 is (95T(51)2455) a highly reactive partner in 1,3-dipolar cycloadditions with several dipoles. Azomethine yhdes, such as oxazolones 7 and miinchnones 8, afforded with 6 bicychc pyrrolo[3,4-d]isothiazole 5,5-dioxides 9, 10, 11 in satisfactory yield. The regioselectivity of the reaction was excellent. The thermal behavior of these new bicychc systems was investigated. When heated at their melting point or shghtly above, triarylpyrroles 12, 13 were obtained through SOj and AtiV-diethylcyanamide ehmination. [Pg.73]

The first report on metal-catalyzed asymmetric azomethine ylide cycloaddition reactions appeared some years before this topic was described for other 1,3-dipolar cycloaddition reactions [86]. However, since then the activity in this area has been very limited in spite of the fact that azomethine ylides are often stabilized by metal salts as shown in Scheme 6.40. [Pg.240]

Grigg et al. have found that chiral cobalt and manganese complexes are capable of inducing enantioselectivity in 1,3-dipolar cycloaddition reactions of azomethine... [Pg.240]

In a more recent publication the same group mentions that Ag(I) salts in combination with chiral phosphine ligands can catalyze the 1,3-dipolar cycloaddition involving the azomethine precursor 64b and methyl vinyl ketone (Scheme 6.43) [87]. The reaction, which presumably also required a stoichiometric amount of the catalyst, proceeds to give 65b in a good yield with 70% ee. [Pg.242]

Although the first metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction involved azomethine ylides, there has not been any significant activity in this area since then. The reactions that were described implied one of more equivalents of the chiral catalyst, and further development into a catalytic version has not been reported. [Pg.245]

The azomethine imine 6.39 reacts readily to give various 1,3-dipolar cycloaddition products (Huisgen and Eckell, 1977 for the naming of cycloadditions see Huisgen 1968). [Pg.128]

Dipolar [3 + 2] cycloadditions are one of the most important reactions for the formation of five-membered rings [68]. The 1,3-dipolar cycloaddition reaction is frequently utihzed to obtain highly substituted pyrroHdines starting from imines and alkenes. Imines 98, obtained from a-amino esters and nitroalkenes 99, are mixed together in an open vessel microwave reactor to undergo 1,3-dipolar cycloaddition to produce highly substituted nitroprolines esters 101 (Scheme 35) [69]. Imines derived from a-aminoesters are thermally isomerized by microwave irradiation to azomethine yhdes 100,... [Pg.232]

Another example of a microwave-assisted 1,3-dipolar cycloaddition using azomethine ylides and a dipolarophile was the intramolecular reaction reported for the synthesis of hexahydrochromeno[4,3-fo]pyrrolidine 105 [70]. It was the first example of a solvent-free microwave-assisted intramoleciflar 1,3-dipolar cycloaddition of azomethine ylides, obtained from aromatic aldehyde 102 and IM-substituted glycinate 103 (Scheme 36). The dipole was generated in situ (independently from the presence of a base like TEA) and reacted directly with the dipolarophile present within the same molecifle. The intramolecu-... [Pg.233]

Scheme 10.10 1,3-Dipolar cycloadditions of azomethine ylides with maleimides in the... Scheme 10.10 1,3-Dipolar cycloadditions of azomethine ylides with maleimides in the...
It is well known that azomethine ylides, which are usually formed in situ, are very good substrates for 1,3-dipolar cycloadditions. The group of Novikov and Khlebnikov [328] generated such a 1,3-dipol by reaction of difluorocarbene formed from CBr2F2 (2-626) with the imine 2-627. Cycloaddition of the obtained 2-629 with an ac-... [Pg.144]

Dipolar addition to nitroalkenes provides a useful strategy for synthesis of various heterocycles. The [3+2] reaction of azomethine ylides and alkenes is one of the most useful methods for the preparation of pyrolines. Stereocontrolled synthesis of highly substituted proline esters via [3+2] cycloaddition between IV-methylated azomethine ylides and nitroalkenes has been reported.147 The stereochemistry of 1,3-dipolar cycloaddition of azomethine ylides derived from aromatic aldehydes and L-proline alkyl esters with various nitroalkenes has been reported. Cyclic and acyclic nitroalkenes add to the anti form of the ylide in a highly regioselective manner to give pyrrolizidine derivatives.148... [Pg.274]

Dipolar cycloaddition reaction of azomethine ylides to alkynes or alkenes followed by oxidation is one of the standard methods for the preparation of pyrroles.54 Recently, this strategy has been used for the preparation of pyrroles with CF3 or Me3Si groups at the (3-positions.55 Addition of azomethine ylides to nitroalkenes followed by elimination of HN02 with base gives pyrroles in 96% yield (Eq. 10.48).56... [Pg.338]

Dipolar cycloaddition reaction of suitable dipolarophiles to azomethine imines is a well-known method leading to the pyrazolo[l,2-tf]pyrazole ring system and the methodology was duly reviewed in CHEC-II(1996) <1996CHEC-II(8)747>. During the covered period, some new applications have appeared. [Pg.412]

Thermolysis of 6-substituted l,5-diazabicyclo[3.1.0]hexanes 326, easily available from 325, leads to a diaziridine ring opening and to the intermediate formation of labile azomethine imines 327. These compounds can be stabilized by a proton shift to form 1-substituted 2-pyrazolines 328. However, when the thermolysis is carried out in the presence of a 1,3-dipolarophile, the corresponding products of dipolar cycloaddition can be obtained. For example, iV-arylmaleimides provide mixtures of the major trans- and minor air-products 329 and 330, respectively (Scheme 47) C1999RJO110, 2001RJ0841, 2003RJ01338, 2004RJ067>. [Pg.414]

Pyrazolo[l,2- ][l,2,4]triazolo[3,4-f][l,2,4]benzotriazines 485-487, containing the title substmcture, can be prepared by application of a well-known strategy using 1,3-dipolar cycloaddition to suitable azomethine imines... [Pg.434]

H(65)1889, 2005EJO3553>. Starting dihydro[l,2,4]triazolo[3, 4-4]benzo[l,2,4]triazines 482 readily react with aromatic aldehydes to yield iminium salts 483. These salts treated with a base (e.g., triethylamine) are deprotonated to reactive 1,3-dipolar azomethine imines 484. In contrast to related five-membered heterocycles, these compounds are relatively unstable on storage in the solid form and particularly in solution. Fortunately, this obstacle can be easily circumvented by their in situ preparation and subsequent 1,3-dipolar cycloaddition. These compounds can participate in 1,3-dipolar cycloadditions with both symmetric and nonsymmetric dipolarophiles to give the expected 1,3-cycloadducts in stereoselective manner. Selected examples are given in Scheme 82. [Pg.436]

High levels of asymmetric induction (97-74% ee) along with high diastereoselectivity (>99 1-64 36) were reported for asymmetric 1,3-dipolar cycloaddition reactions of fused azomethine imines 315 and 3-acryloyl-2-oxazolidinone 709 leading to 711 using a chiral BINIM-Ni(n) complex 710 as a chiral Lewis acid catalyst (Equation 100) <20070L97>. [Pg.470]

The regio- and stereochemical outcome of the intermolecular 1,3-dipolar cycloaddition of an azomethine ylide generated by the decarboxylative condensation of an isatin with an a-amino acid was unambiguously determined by a single-crystal X-ray study of the spirocyclic heterocycle 49 (R1 =4-Br, R2 = H, X = CH2) <1998TL2235>. [Pg.647]

Dipolar cycloaddition reaction of benzo(A)thiophene-l,1-dioxide 282 with nonstabilized azomethine ylides gave high overall yield of new pyrrolo derivatives 5 and 6 with low stereoselectivity (Scheme 50) <2006TL5139>. [Pg.671]

The three-component reaction between isatin 432a, a-aminoacids 433 (proline and thioproline) and dipolarophiles in methanol/water medium was carried out by heating at 90 °C to afford the pyrrolidine-2-spiro-3 -(2-oxindoles) 51. The first step of the reaction is the formation of oxazlidinones 448. Loss of carbon dioxide from oxazolidinone proceeds via a stereospecific 1,3-cycloreversion to produce the formation of oxazolidinones almost exclusively with /razw-stereoselectivity. This /f-azomethine ylide undergo 1,3-dipolar cycloaddition with dipolarophiles to yield the pyrrohdinc-2-r/ V -3-(2-oxindolcs) 51. (Scheme 101) <2004EJ0413>. [Pg.697]

Azomethine ylides of pyrrolo[l,2- ]pyrazine <1996JOC4655> and 3,4-dihydro pyrrolo[l,2-tf]pyrazine <1997T9341> undergo 1,3-dipolar cycloadditions with a number of dipolarophiles. For example, the ylide 178 reacts with propargylic ester 179 to give the tricyclic derivative 180 (Equation 43). [Pg.733]

Synthetic work commenced with evaluation of an azomethine ylide dipole for the proposed intramolecular dipolar cycloaddition. A number of methods exist for the preparation of azomethine ylides, including, inter alia, transformations based on fluoride-mediated desilylation of a-silyliminium species, electrocyclic ring opening of aziridines, and tautomerization of a-amino acid ester imines [37]. In particular, the fluoride-mediated desilylation of a-silyliminium species, first reported by Vedejs in 1979 [38], is among the most widely used methods for the generation of non-stabilized azomethine ylides (Scheme 1.6). [Pg.9]

The feasibility of azomethine ylide generation from 7 and intramolecular dipolar cycloaddition was examined under a variety of conditions. For example, activation of vinylogous amide 71 with BzOTf [41] followed by desilylation with TBAT led to complex mixtures of products. Likewise, using MeOTf as the activating agent yielded similar results. Significantly, none of these protocols furnished the desired pyrrolidine 73. Only decomposition of the silylpyridinone to form unidentified products was observed, despite the fact that quantitative O-methylation of the... [Pg.10]

The benzocinnolinium azomethine imines 76 (R = Ph, OEt) react readily with DEAZD by 1,3-dipolar cycloaddition to give the corresponding tetra-zolidine derivatives (Eq. 10).124 The masked azomethine imine 77 is particularly unreactive as a 1,3-dipole, although PTAD reacts cleanly where other dipolarophiles either failed to react or gave complex mixtures (Eq. 11).125... [Pg.21]


See other pages where Azomethine, 1,3 dipolar cycloaddition is mentioned: [Pg.10]    [Pg.247]    [Pg.213]    [Pg.241]    [Pg.248]    [Pg.249]    [Pg.196]    [Pg.54]    [Pg.227]    [Pg.1150]    [Pg.255]    [Pg.259]    [Pg.89]    [Pg.301]    [Pg.303]    [Pg.151]    [Pg.426]    [Pg.10]    [Pg.11]   
See also in sourсe #XX -- [ Pg.308 ]

See also in sourсe #XX -- [ Pg.33 ]




SEARCH



1,3-Dipolar cycloadditions azomethine ylid

1,3-dipolar cycloaddition azomethine ylides

1.3- Dipolar cycloaddition of azomethine imines

1.3- Dipolar cycloaddition of azomethine yhdes

1.3- Dipolar cycloaddition of azomethine ylides

1.3- Dipolar cycloaddition reactions azomethine imines

1.3- dipolar cycloaddition reactions with azomethine imines

1.3- dipolar cycloaddition reactions with azomethine yhdes

Amino esters, azomethine ylides 1,3-dipolar cycloadditions

Azomethine bond 1, 3-dipolar cycloaddition

Azomethine imines 1,3-dipolar cycloadditions

Azomethine imines, asymmetric 1,3-dipolar cycloaddition

Azomethine ylide intramolecular dipolar cycloaddition

Azomethine ylides 1,3-dipolar cycloaddition reactions

Azomethine ylides 1,3-dipolar cycloadditions

Azomethine ylides external reagents, 1,3-dipolar cycloaddition

Azomethine ylids 1,3-dipolar cycloadditions

Azomethine, 1,3 dipolar cycloaddition reaction

Azomethines, cycloaddition

Enantioselectivity azomethine ylide 1,3-dipolar cycloadditions

Esters azomethine ylide 1,3-dipolar cycloadditions

Intramolecular dipolar cycloaddition reactions of azomethine ylides

Lewis acids azomethine ylide 1,3-dipolar cycloadditions

Michael additions azomethine ylides, 1,3-dipolar cycloadditions

© 2024 chempedia.info