Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Azomethine ylide intramolecular dipolar cycloaddition

Synthetic work commenced with evaluation of an azomethine ylide dipole for the proposed intramolecular dipolar cycloaddition. A number of methods exist for the preparation of azomethine ylides, including, inter alia, transformations based on fluoride-mediated desilylation of a-silyliminium species, electrocyclic ring opening of aziridines, and tautomerization of a-amino acid ester imines [37]. In particular, the fluoride-mediated desilylation of a-silyliminium species, first reported by Vedejs in 1979 [38], is among the most widely used methods for the generation of non-stabilized azomethine ylides (Scheme 1.6). [Pg.9]

The feasibility of azomethine ylide generation from 7 and intramolecular dipolar cycloaddition was examined under a variety of conditions. For example, activation of vinylogous amide 71 with BzOTf [41] followed by desilylation with TBAT led to complex mixtures of products. Likewise, using MeOTf as the activating agent yielded similar results. Significantly, none of these protocols furnished the desired pyrrolidine 73. Only decomposition of the silylpyridinone to form unidentified products was observed, despite the fact that quantitative O-methylation of the... [Pg.10]

The formation and intramolecular dipolar cycloaddition of azomethine ylides formed by carbenoid reaction with C=N bonds has recently been studied by the authors group.84 Treatment of 2-(diazoace-tyl)benzaldehyde O-methyl oxime (176) with rhodium(II) octanoate in the presence of dimethyl acetylenedicarboxylate or N-phenylmaleimide produced cycloadducts 178 and 179, respectively. The cycloaddition was also carried out using p-quinone as the dipolarophile. The major product isolated corresponded to cycloadduct 180. The subsequent reaction of this material with excess acetic anhydride in pyridine afforded diacetate 181 in 67% overall yield from 176. The latter compound incorporates the basic dibenzofa, d -cyclohepten-5,10-imine skeleton found in MK-801,85 which is a selective ligand for brain cyclidine (PCP) receptors that has attracted considerable attention as a potent anticonvulsive and neuro-protective agent.86,87... [Pg.140]

The formation and intramolecular dipolar cycloaddition of azomethine ylides formed by carbenoid reaction with C-N double bonds has recently been studied by the author s group [66]. Treatment of 2-(diazoacetyl)benzaldehyde O-methyl oxime (118) with rhodium (II) octanoate in the presence of dimethyl acetylenedicarboxylate or iV-phenylmaleimide produced cycloadducts 120 and... [Pg.138]

Condensation of the aldehyde 9 and A-methyl-glycine gives an intermediate imininum ion which is trapped intramolecularly to give an oxazolidinone. Thermal elimination of CO2 generates an azomethine ylide that undergoes ready intramolecular dipolar cycloaddition onto the alkene. The di-flised product will have the lower activation energy. See C. J. Lovely and H. Mahmud, Tetrahedron Lett., 40 (1999), 2079. [Pg.475]

Intramolecular dipolar cycloaddition reactions of azomethine ylides 05CRV2765. [Pg.20]

A tandem one-pot reaction of an aldehyde with a primary amine involving condensation and then cyelization (N-alkylation ), followed by intramolecular dipolar cycloaddition of the resulting nitrone or azomethine ylide, provides a synthesis of bridged tricyclic amines. [Pg.263]

I. Coldham, R. Hufton, Intramolecular dipolar cycloaddition reactions of azomethine ylides, Chem. Rev. 105 (7) (2005) 2765-2810. [Pg.21]

Another example of a microwave-assisted 1,3-dipolar cycloaddition using azomethine ylides and a dipolarophile was the intramolecular reaction reported for the synthesis of hexahydrochromeno[4,3-fo]pyrrolidine 105 [70]. It was the first example of a solvent-free microwave-assisted intramoleciflar 1,3-dipolar cycloaddition of azomethine ylides, obtained from aromatic aldehyde 102 and IM-substituted glycinate 103 (Scheme 36). The dipole was generated in situ (independently from the presence of a base like TEA) and reacted directly with the dipolarophile present within the same molecifle. The intramolecu-... [Pg.233]

A 1,3-dipolar cycloaddition of the nonstabilized azomethine ylide 6 is the key step in a three-component reaction. The azomethine ylides were generated from (2-azaallyl)stannanes or (2-azaallyl)silanes 5 through an intramolecular iV-alkylation/demetallation cascade. The ylides underwent cycloaddition reactions with dipolarophiles yielding indolizidine derivatives 7-9 <2004JOC1919> (Scheme 1). [Pg.370]

The addition to alkenes normally leads to unstable adducts that lose carbon dioxide under the reaction conditions. The intramolecular cycloaddition of the sydnone (30) takes place at room temperature, however (Equation (5)) and the cycloadduct (31) has been characterized <86HCA927>. The unstable species formed by the loss of carbon dioxide are also azomethine ylides. It is therefore possible for a second 1,3-dipolar addition to take place, as illustrated in Scheme 6 for the reaction of 3-phenylsydnone with Al-phenylmaleimide <86TL317,92JA8414>. This 2 1 addition has been used as the basis of a synthesis of polyimides. Imides of the type (32) were used as the dipolarophiles and their reaction with 3-phenylsydnone gave linear polymers <87MM726>. [Pg.173]

The proposed reaction pathway invokes initial formation of carbonyl ylide 100 by intramolecular cyclization of the intermediate keto carbenoid onto the oxygen atom of the amide. Subsequent isomerization to the azomethine ylide is followed by 1,3-dipolar cycloaddition to DMAD to furnish the intermediate cycloadduct 101, which undergoes in situ alkoxy 1,3-shift to the final drhydropyrrolizine 102 (Scheme 3.28). [Pg.186]

At about the same time, Wenkert and c-workers (75) reported a similar smdy into the intramolecular 1,3-dipolar cycloaddition of 2-alkenoyl-aziridine derived azomethine ylides. Thermolysis of 231 at moderate temperature (85 °C) produced 232 as a single isomer in 58% yield. Similarly, 233 furnished 234 in 67% yield. In each case, the same stereoisomers were produced regardless of the initial stereochemistry of the initial aziridine precursors. However, the reaction proved to be sensitive to both the substituents of the aziridine and tether length, as aziridines 235 and 236 furnished no cycloadducts, even at 200 °C (Scheme 3.79). [Pg.220]

For intramolecular 1,3-dipolar cycloadditions, the application of nitrones and nitrile oxides is by far most common. However, in increasing frequency, cases intramolecular reactions of azomethine ylides (76,77,242-246) and azides (247-259) are being reported. The previously described intermolecular approach developed by Harwood and co-workers (76,77) has been extended to also include intramolecular reactions. The reaction of the chiral template 147 with the alkenyl aldehyde 148 led to the formation of the azomethine ylide 149, which underwent an intramolecular 1,3-dipolar cycloaddition to furnish 150 (Scheme 12.49). The reaction was found to proceed with high diastereoselectivity, as only one diaster-eomer of 150 was formed. By a reduction of 150, the proline derivative 151 was obtained. [Pg.850]


See other pages where Azomethine ylide intramolecular dipolar cycloaddition is mentioned: [Pg.10]    [Pg.11]    [Pg.669]    [Pg.33]    [Pg.37]    [Pg.103]    [Pg.1150]    [Pg.259]    [Pg.845]    [Pg.836]    [Pg.691]    [Pg.1088]    [Pg.442]    [Pg.442]   
See also in sourсe #XX -- [ Pg.669 ]




SEARCH



1,3-cycloaddition intramolecular

1,3-dipolar cycloaddition azomethine ylides

1.3- Dipolar cycloadditions intramolecular cycloaddition

1.3- dipolar cycloadditions intramolecular

Azomethine 1,3-dipolar cycloaddition

Azomethine ylide cycloaddition

Azomethine ylide cycloadditions

Azomethine ylide cycloadditions intramolecular

Azomethine ylides 1,3-dipolar cycloadditions

Azomethine ylides cycloaddition

Azomethine ylides intramolecular cycloadditions

Azomethines, cycloaddition

Dipolar intramolecular

Intramolecular dipolar cycloaddition

Ylides cycloaddition

© 2024 chempedia.info