Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Austenitic stainless steels nickel

The highly aHoyed austenitic stainless steels are proprietary modifications of the standard AISI 316 stainless steel. These have higher creep—mpture strengths than the standard steels, yet retain the good corrosion resistance and forming characteristics of the standard austenitic stainless steels. Nickel-Base Superalloys. [Pg.119]

Materials such as austenitic stainless steels, nickel-based alloys, and titanium alloys can be used as materials for pressure vessel components in cryogenic applications at temperatures as low as 200°C. Alloy steels have brittle transition points making their impact properties at low temperatures unsuitable for pressure applications. Closures and bolts must also be made of materials that remain ductile at low temperatures. [Pg.1248]

Superabrasive tools, primarily PCBN, have been used to successfully weld ferritic steels, ferritic stainless steels, austenitic stainless steels, nickel-base superalloys. Invar, and Narloy-Z. Attempts to weld titanium with PCBN tools have been inconclusive. Tool life of 80 m (260 ft) has been demonstrated in FSW of 1018 steel, and very low tool wear has been reported on all other alloys. The primary concern in tool life continues to be fracture, and developments in PCBN grades continue to improve the fracture toughness of the FSW tools. The PCBN tools provide an extremely smooth finish when used for FSW or FSP. [Pg.119]

Molybdenum alloying is not particularly beneficial for SCC resistance of austenitic stainless steels nickel is the most important beneficial element. Referring to Figure 26, Mo increases and by about the sme amount, through its effect on the localized corrosion velocity, while Ni (above 10%) decreases the crack velocity, thus lowering E [68,111,112]. [Pg.429]

There have been well-documented instances of environmentally assisted cracking in high-temperature water of austenitic stainless steels, nickel-base alloys, low-alloy and carbon steels, and their weld metals in various subcomponents of pressure vessels, pressurizers, steam generators, piping, deaerators, etc. Consequently, there is a strong driving force to derive design and life prediction codes which can account for... [Pg.605]

Microfissuring. Similar to austenitic stainless steel, nickel alloys are susceptible to formation of liquation cracks in reheated weld metal regions or parent metal HAZ. This type of cracking is controlled by factors outside the control of the welder such as grain size or content impurity. Some alloys are more sensitive than others. For example, the extensively studied Inconel 718 is now less sensitive than some cast superalloys, which cannot be welded without inducing liquation cracks. [Pg.673]

AISI 321 and 347 are stainless steels that contain titanium and niobium iu order to stabilize the carbides (qv). These metals prevent iatergranular precipitation of carbides during service above 480°C, which can otherwise render the stainless steels susceptible to iatergranular corrosion. Grades such as AISI 316 and 317 contain 2—4% of molybdenum, which iacreases their creep—mpture strength appreciably. In the AISI 200 series, chromium—manganese austenitic stainless steels the nickel content is reduced iu comparison to the AISI 300 series. [Pg.118]

Nickel—Iron. A large amount of nickel is used in alloy and stainless steels and in cast irons. Nickel is added to ferritic alloy steels to increase the hardenabihty and to modify ferrite and cementite properties and morphologies, and thus to improve the strength, toughness, and ductihty of the steel. In austenitic stainless steels, the nickel content is 7—35 wt %. Its primary roles are to stabilize the ductile austenite stmcture and to provide, in conjunction with chromium, good corrosion resistance. Nickel is added to cast irons to improve strength and toughness. [Pg.6]

Austenitic Stainless Steels. These steels, based on iron—chromium—nickel alloys, are not hardenable by heat treatment and are predominandy austenitic. They include Types 301, 302, 302B, 303, 304, 304L, 305, 308, 309, 310, 314, 316, 316L, 317, 321, and 347. The L refers to 0.03% carbon max, which is readily available. In some austenitic stainless steels, all or part of the nickel is replaced by manganese and nitrogen in proper amounts, as in one proprietary steel and Types 201 and 202 (see Table 4). [Pg.399]

Temperature, op Carbon steel, carbon-molybdenum low-chromium (through 3 Cr Mo) 5Cr Mo through 9 Cr Mo Austenitic stainless steels, 18 Cr, 8 Ni 12 Cr 17 Cr 27 Cr 25 Cr, 20 Ni Monel 67 Ni, 30Cii 3V2 Nickel Aluminum Gray cast iron Bronze Brass 70Cii, 30 Ni Ni-Fe-Cr Ni-Cr-Fe Ductile iron... [Pg.996]

Austenitic stainless steels are the most corrosion-resistant of the three groups. These steels contain 16 to 26 percent chromium and 6 to 22 percent nickel. Carbon is kept low (0.08 percent maximum) to minimize carbide precipitation. These alloys can be work-hardened, but heat treatment will not cause hardening. Tensile strength in the annealed condition is about 585 MPa (85,000 Ibf/in"), but workhardening can increase this to 2,000 MPa (300,000 Ibf/in"). Austenitic stainless steels are tough and ducdile. [Pg.2448]

The resistance of a metal to erosion-corrosion is based principally on the tenacity of the coating of corrosion products it forms in the environment to which it is exposed. Zinc (brasses), aluminum (aluminum brass), and nickel (cupronickel) alloyed with copper increase the coating s tenacity. An addition of V2 to 1)4% iron to cupronickel can greatly increase its erosion-corrosion resistance for the same reason. Similarly, chromium added to iron-base alloys and molybdenum added to austenitic stainless steels will increase resistance to erosion-corrosion. [Pg.249]

Use fully killed or fine grain steel, controlled rolling temperatures high Mn/C ratios eliminate sharp corners in design, remove defects from steel heat treat steel. For cryogenic operations use high nickel alloy steels or austenitic stainless steels, depending on temperature. [Pg.251]

Nonmagnetic drill collars are manufactured from various alloys, although the most common are Monel K500 (approximately 68% nickel, 28% copper with some iron and manganese, and 316L austenitic stainless steel). A stainless steel with the composition of 0.06% carbon, 0.50% silicon, 17-19% manganese, less than 3.50% nickel, 12% chromium, and 1.15% molybdenum, with mechanical properties of 110 to 115 Ksi tensile strength is also used. [Pg.1258]

Steels and austenitic stainless steels are susceptible to molten zinc, copper, lead and other metals. Molten mercury, zinc and lead attack aluminum and copper alloys. Mercury, zinc, silver and others attack nickel alloys. Other low-melting-point metals that can attack common constructional materials include tin, cadmium, lithium, indium, sodium and gallium. [Pg.895]

Steel is the most common constructional material, and is used wherever corrosion rates are acceptable and product contamination by iron pick-up is not important. For processes at low or high pH, where iron pick-up must be avoided or where corrosive species such as dissolved gases are present, stainless steels are often employed. Stainless steels suffer various forms of corrosion, as described in Section 53.5.2. As the corrosivity of the environment increases, the more alloyed grades of stainless steel can be selected. At temperatures in excess of 60°C, in the presence of chloride ions, stress corrosion cracking presents the most serious threat to austenitic stainless steels. Duplex stainless steels, ferritic stainless steels and nickel alloys are very resistant to this form of attack. For more corrosive environments, titanium and ultimately nickel-molybdenum alloys are used. [Pg.898]

Nickel-chromium alloys can be used in place of austenitic stainless steels where additional corrosion resistance is required. These alloys are still austenitic but are highly resistant to chloride-induced stress corrosion cracking when their nickel content exceeds 40 per cent. [Pg.906]

A more detailed treatment of sensitisation of austenitic stainless steels, of intergranular corrosion of austenitic stainless steels without sensitisation, and of sensitisation and intergranular corrosion of ferritic stainless steels and high-nickel alloys, is given by Cowan and Tedmon . [Pg.43]

The fracture mode of stress-corrosion cracks in austenitic stainless steels can be transgranular, intergranular or a mixture of both. One of the earliest environments found to cause problems was solutions containing chlorides or other halides and the data due to Copson (Fig. 8.30) is very informative. The test solution for that data was magnesium chloride at 154°C the alloys contained 18-20alloy with a composition of approximately 18Cr-8Ni has the least resistance to cracking in this environment. [Pg.1213]

Fig. 8.49 Effect of nickel content on residual ductility of austenitic stainless steels (after... Fig. 8.49 Effect of nickel content on residual ductility of austenitic stainless steels (after...
Super austenitic, high nickel, stainless steels, containing between 29 to 30 per cent nickel and 20 per cent chromium, have a good resistance to acids and acid chlorides. They are more expensive than the lower alloy content, 300 series, of austenitic stainless steels. [Pg.298]


See other pages where Austenitic stainless steels nickel is mentioned: [Pg.637]    [Pg.637]    [Pg.238]    [Pg.119]    [Pg.6]    [Pg.124]    [Pg.399]    [Pg.399]    [Pg.147]    [Pg.279]    [Pg.280]    [Pg.394]    [Pg.195]    [Pg.263]    [Pg.193]    [Pg.899]    [Pg.900]    [Pg.905]    [Pg.908]    [Pg.230]    [Pg.469]    [Pg.1252]    [Pg.95]    [Pg.409]    [Pg.1064]    [Pg.75]    [Pg.31]    [Pg.47]    [Pg.378]    [Pg.87]   
See also in sourсe #XX -- [ Pg.789 ]




SEARCH



Austenitic

Austenitic stainless steel

Nickel steels

© 2024 chempedia.info