Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atom, atomic mass structure

To facilitate conformational transitions in the before-mentioned adenylate kinase, Elamrani and co-workers scaled all atomic masses by a large factor thus allowing the use of a high effective simulation temperature of 2000K ([Elamrani et al. 1996]). To prevent protein unfolding, elements of secondary structure had to be constrained. [Pg.73]

The function/( C) may have a very simple form, as is the case for the calculation of the molecular weight from the relative atomic masses. In most cases, however,/( Cj will be very complicated when it comes to describe the structure by quantum mechanical means and the property may be derived directly from the wavefunction for example, the dipole moment may be obtained by applying the dipole operator. [Pg.488]

APW (augmented plane wave) a band structure computation method atomic mass unit (amu) atomic unit of mass... [Pg.360]

The previous discussion has centered on how to obtain as much molecular mass and chemical structure information as possible from a given sample. However, there are many uses of mass spectrometry where precise isotope ratios are needed and total molecular mass information is unimportant. For accurate measurement of isotope ratio, the sample can be vaporized and then directed into a plasma torch. The sample can be a gas or a solution that is vaporized to form an aerosol, or it can be a solid that is vaporized to an aerosol by laser ablation. Whatever method is used to vaporize the sample, it is then swept into the flame of a plasma torch. Operating at temperatures of about 5000 K and containing large numbers of gas ions and electrons, the plasma completely fragments all substances into ionized atoms within a few milliseconds. The ionized atoms are then passed into a mass analyzer for measurement of their atomic mass and abundance of isotopes. Even intractable substances such as glass, ceramics, rock, and bone can be examined directly by this technique. [Pg.284]

A representation of atomic structure. The various spheres are not drawn to scale. The lump of iron on the left would contain almost a million million million million (10 ) atoms, one of which is represented by the sphere in the top center of the page. In turn, each atom is composed of a number of electrons, protons, and neutrons. For example, an atom of the element iron contains 26 electrons, 26 protons, and 30 neutrons. The physical size of the atom is determined mainly by the number of electrons, but almost all of its mass is determined by the number of protons and neutrons in its dense core or nucleus (lower part of figure). The electrons are spread out around the nucleus, and their number determines atomic size but the protons and neutrons compose a very dense, small core, and their number determines atomic mass. [Pg.336]

Molecular ion. An ion formed by the removal (positive ions) or addition (negative ions) of one or more electrons from a molecule without fragmentation of the molecular structure. The mass of this ion corresponds to the sum of the masses of the most abundant naturally occurring isotopes of the various atoms that make up the molecule (with a correction for the masses of the electrons lost or gained). For example, the mass of the molecular ion of the ethyl bromide CzHjBr will be 2 x 12 plus 5 x 1.0078246 plus 78.91839 minus the mass of the electron (m ). This is equal to 107.95751p -m, the unit of atomic mass based on the standard that the mass of the isotope = 12.000000 exactly. [Pg.442]

Our present views on the electronic structure of atoms are based on a variety of experimental results and theoretical models which are fully discussed in many elementary texts. In summary, an atom comprises a central, massive, positively charged nucleus surrounded by a more tenuous envelope of negative electrons. The nucleus is composed of neutrons ( n) and protons ([p, i.e. H ) of approximately equal mass tightly bound by the force field of mesons. The number of protons (2) is called the atomic number and this, together with the number of neutrons (A ), gives the atomic mass number of the nuclide (A = N + Z). An element consists of atoms all of which have the same number of protons (2) and this number determines the position of the element in the periodic table (H. G. J. Moseley, 191.3). Isotopes of an element all have the same value of 2 but differ in the number of neutrons in their nuclei. The charge on the electron (e ) is equal in size but opposite in sign to that of the proton and the ratio of their masses is 1/1836.1527. [Pg.22]

Since co2 =K/m, the mean potential and kinetic energy terms are equal and the total energy of the linear oscillator is twice its mean kinetic energy. Since there are three oscillators per atom, for a monoatomic crystal U m =3RT and Cy m =3R = 2494 J K-1 mol-1. This first useful model for the heat capacity of crystals (solids), proposed by Dulong and Petit in 1819, states that the molar heat capacity has a universal value for all chemical elements independent of the atomic mass and crystal structure and furthermore independent of temperature. Dulong-Petit s law works well at high temperatures, but fails at lower temperatures where the heat capacity decreases and approaches zero at 0 K. More thorough models are thus needed for the lattice heat capacity of crystals. [Pg.233]

Only a few relevant points about the atomic structures are summarized in the following. Table 4.1 collects basic data about the fundamental physical constants of the atomic constituents. Neutrons (Jn) and protons (ip), tightly bound in the nucleus, have nearly equal masses. The number of protons, that is the atomic number (Z), defines the electric charge of the nucleus. The number of neutrons (N), together with that of protons (A = N + Z) represents the atomic mass number of the species (of the nuclide). An element consists of all the atoms having the same value of Z, that is, the same position in the Periodic Table (Moseley 1913). The different isotopes of an element have the same value of Z but differ in the number of neutrons in their nuclei and therefore in their atomic masses. In a neutral atom the electronic envelope contains Z electrons. The charge of an electron (e ) is equal in size but of opposite sign to that of a proton (the mass ratio, mfmp) is about 1/1836.1527). [Pg.224]

The successful prediction of superconductivity in the high pressure Si phases added much credibility to the total energy approach generally. It can be argued that Si is the best understood superconductor since the existence of the phases, their structure and lattice parameters, electronic structure, phonon spectrum, electron-phonon couplings, and superconducting transition temperatures were all predicted from first principles with the atomic number and atomic mass as the main input parameters. [Pg.261]

It is critical when performing quantitative GC/MS procedures that appropriate internal standards are employed to account for variations in extraction efficiency, derivatization, injection volume, and matrix effects. For isotope dilution (ID) GC/MS analyses, it is crucial to select an appropriate internal standard. Ideally, the internal standard should have the same physical and chemical properties as the analyte of interest, but will be separated by mass. The best internal standards are nonradioactive stable isotopic analogs of the compounds of interest, differing by at least 3, and preferably by 4 or 5, atomic mass units. The only property that distinguishes the analyte from the internal standard in ID is a very small difference in mass, which is readily discerned by the mass spectrometer. Isotopic dilution procedures are among the most accurate and precise quantitative methods available to analytical chemists. It cannot be emphasized too strongly that internal standards of the same basic structure compensate for matrix effects in MS. Therefore, in the ID method, there is an absolute reference (i.e., the response factors of the analyte and the internal standard are considered to be identical Pickup and McPherson, 1976). [Pg.183]


See other pages where Atom, atomic mass structure is mentioned: [Pg.80]    [Pg.490]    [Pg.1287]    [Pg.1085]    [Pg.38]    [Pg.363]    [Pg.194]    [Pg.216]    [Pg.5]    [Pg.120]    [Pg.479]    [Pg.3]    [Pg.264]    [Pg.434]    [Pg.674]    [Pg.380]    [Pg.195]    [Pg.45]    [Pg.20]    [Pg.413]    [Pg.420]    [Pg.391]    [Pg.699]    [Pg.230]    [Pg.227]    [Pg.77]    [Pg.294]    [Pg.163]    [Pg.288]    [Pg.32]    [Pg.202]    [Pg.142]    [Pg.65]    [Pg.225]   
See also in sourсe #XX -- [ Pg.3 ]

See also in sourсe #XX -- [ Pg.3 ]

See also in sourсe #XX -- [ Pg.3 , Pg.4 ]




SEARCH



Atom , atomic mass

Atomic mass

Fast atom bombardment mass structure

© 2024 chempedia.info