Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atom-at-a-time

Unconstrained optimization methods [W. II. Press, et. ah, Numerical Recipes The An of Scieniific Compulime.. Cambridge University Press, 1 9H6. Chapter 101 can use values of only the objective function, or of first derivatives of the objective function. second derivatives of the objective function, etc. llyperChem uses first derivative information and, in the Block Diagonal Newton-Raphson case, second derivatives for one atom at a time. TlyperChem does not use optimizers that compute the full set of second derivatives (th e Hessian ) because it is im practical to store the Hessian for mac-romoleciiles with thousands of atoms. A future release may make explicit-Hessian meth oils available for smaller molecules but at this release only methods that store the first derivative information, or the second derivatives of a single atom, are used. [Pg.303]

Dmitri Mendeleev) Mendelevium, the ninth transuranium element of the actinide series discovered, was first identified by Ghiorso, Harvey, Choppin, Thompson, and Seaborg in early in 1955 during the bombardment of the isotope 253Es with helium ions in the Berkeley 60-inch cyclotron. The isotope produced was 256Md, which has a half-life of 76 min. This first identification was notable in that 256Md was synthesized on a one-atom-at-a-time basis. [Pg.214]

The Newton-Raphson block diagonal method is a second order optimizer. It calculates both the first and second derivatives of potential energy with respect to Cartesian coordinates. These derivatives provide information about both the slope and curvature of the potential energy surface. Unlike a full Newton-Raph son method, the block diagonal algorithm calculates the second derivative matrix for one atom at a time, avoiding the second derivatives with respect to two atoms. [Pg.60]

Pragmatically, the procedure considers only one atom at a time, computing the 3x3 Hessian matrix associated with that atom and the 3 components of the gradient for that atom and then inverts the 3x3 matrix and obtains new coordinates for the atom according to the Newton-Raphson formula above. It then goes on to the next atom and moves it in the same way, using first and second derivatives for the second atom that include any previous motion of atoms. [Pg.306]

I have already said that a hydrogen atom can only bond with one other atom. This is because it only has one electron to share. The element carbon has four electrons it can share easily, and so it can bond to four different atoms at a time. Because carbon is so versatile, it can form very complex molecules. These complex molecules are what led to life on this planet living things are primarily made of large molecules with a backbone of carbon. [Pg.285]

As pointed out previously, controlled degradation reactions are very difficult with aliphatic or alicyclic hydrocarbons, and most of the relabeling work has been concentrated on aromatic reaction products. Procedures have been extensively described by Pines and co-workers (e.g., 97, 96, also 87, 89-98, 95, 98). For the present purpose, it suffices to note that the 14C contents of the methyl side-chains and the rings in aromatic reaction products are readily estimated by oxidation of the methyl to carboxyl, followed by decarboxylation, while ethyl side-chains may be oxidatively degraded one carbon atom at a time. Radiochemical assays may be made on CO2 either directly in a gas counter, or after conversion to barium carbonate, while other solid degradation intermediates (e.g., benzoic acid or the phthalic acids) may be either assayed directly as solids or burned to CO2. Liquids are best assayed after burning to CO2. [Pg.25]

Once fatty acids have been made 16 carbons long, they can be lengthened by adding 2 carbon atoms at a time with malonyl-CoA in a reaction that looks a lot like the first step of fatty acid synthesis. However, the elongation reaction is carried out on the fatty acyl-CoA and by an enzyme that is different from fatty acid synthase.4 ... [Pg.174]

The essence of Monte-Carlo models is to calculate the path of an ion as it penetrates a crystal. Early versions of these models used the binary collision approximation, i.e., they only treated collisions with one atom at a time. Careful estimates have shown that this is an accurate procedure for collisions with a single row of atoms (Andersen and Feldman, 1970). However, when the rows are assembled into a crystal the combined potentials of many neighboring atomic rows affect ion trajectories near the center of a channel. For this reason, the more sophisticated models used currently (Barrett, 1971, 1990 Smulders and Boerma, 1987) handle collisions with far-away atoms using the continuum string approximation,... [Pg.218]

Madia, W.J. (2006) Building the future an atom at a time realizing Feynman s vision, The 2005 Distinguished Lecture in Materials and Society (ASM International, Materials Park, OH),Metall. Mater. Trans. A, 37A, 2905 and B, 37B, 653. [Pg.614]

For the very heavy elements which are not available in micro-or nanogram quantities or which are synthesized one atom at a time , partition methods are the only practical way of determining complexing constants. When the half-life of an element is short, dynamic rather than static procedures are used since they give the most rapid experimental results (12). [Pg.8]

The common fatty acids have a linear chain containing an even number of carbon atoms, which reflects that the fatty acid chain is built up two carbon atoms at a time during biosynthesis. The structures and common names for several common fatty acids are provided in table 18.1. Fatty acids such as palmitic and stearic acids contain only carbon-carbon single bonds and are termed saturated. Other fatty acids such as oleic acid contain a single carbon-carbon double bond and are termed monounsaturated. Note that the geometry around this bond is cis, not trans. Oleic acid is found in high concentration in olive oil, which is low in saturated fatty acids. In fact, about 83% of all fatty acids in olive oil is oleic acid. Another 7% is linoleic acid. The remainder, only 10%, is saturated fatty acids. Butter, in contrast, contains about 25% oleic acid and more than 35% saturated fatty acids. [Pg.243]

Only about one ounce of natural francium exists in the Earths crust. All the other isotopes of francium are artificially produced in very small amounts (just a few atoms at a time) that exist for a few seconds to minutes. [Pg.64]

Mendeleviums chemical and physical properties are not well known because such small amounts with short half-lives have been produced. Many of its isotopes are produced just one atom at a time, making it difficult to weigh and measure samples. Its melting point is thought to be about 1,827°C, but its boiling point and density are unknown. [Pg.332]

Only trace amounts of mendelevium have been artificially produced—much of it just one atom at a time—and thus to date, only several million atoms have been artificially made. [Pg.332]

Dr. Darleane C. Hoffman of the Nuclear Science Division of the Lawrence Berkeley National Laboratory and Department of Chemistry at the University of California at Berkeley has written and presented several papers documenting her work and that of her team on the laboratory production of transactinide and actinide elements one-atom-at-a-time. She explains the difficulty of determining the chemistry of heavy elements How long does an atom need to exist before it s possible to do any meaningful chemistry on it Is it possible to learn anything at all about the reactions of an element for which no more... [Pg.340]

Unnilseptium, or bohrium, is artificially produced one atom at a time in particle accelerators. In 1976 Russian scientists at the nuclear research laboratories at Dubna synthesized element 107, which was named unnilseptium by lUPAC. Only a few atoms of element 107 were produced by what is called the cold fusion process wherein atoms of one element are slammed into atoms of a different element and their masses combine to form atoms of a new heavier element. Researchers did this by bombarding bismuth-204 with heavy ions of chromium-54 in a cyclotron. The reaction follows Bi-209 + Cr-54 + neutrons = (fuse to form) Uns-262 + an alpha decay chain. [Pg.347]

Note Superactinides and super heavy elements (SHE) are elements beyond lawrencium 103- All are artificially produced, unstable, and radioactive and have very short half-lives. Most are made in small amounts, even one atom at a time. [Pg.441]

In the case of ethane, this mechanism cannot occur since the resulting metal-ethyl intermediate does not display any alkyl group in the P-position. Consequently, with tantalum hydride(s), 3, which cleave ethane, another process must take place, involving only one carbon atom at a time. Among various reasonable possibilities, we assume a carbene deinsertion from a tantalum-ethyl species because the reverse step is known in organometallic chemistry (Scheme 3.4) [22]. Note that this reverse step has been postulated as the key step in Fischer-Tropsch synthesis [23]. [Pg.83]

In 1955 Albert Ghiorso and his colleagues at the University of California at Berkeley discovered the artificial element mendelevium. The scientists produced mendelevium one atom at a time, getting 17 atoms in all. Mendelevium was added to the periodic table as element number 101. [Pg.175]

When researchers position the tip even closer to the surface, sometimes an atom will stick to the probe. If this attractive force is strong enough, the atom will break free of the surface and follow the probe. By picking up an atom and then placing it down at another spot, STM allows scientists to move material one atom at a time. [Pg.52]


See other pages where Atom-at-a-time is mentioned: [Pg.309]    [Pg.706]    [Pg.349]    [Pg.215]    [Pg.6]    [Pg.1282]    [Pg.695]    [Pg.65]    [Pg.494]    [Pg.127]    [Pg.572]    [Pg.695]    [Pg.22]    [Pg.703]    [Pg.173]    [Pg.26]    [Pg.116]    [Pg.116]    [Pg.160]    [Pg.685]    [Pg.13]    [Pg.307]    [Pg.339]    [Pg.341]    [Pg.341]    [Pg.98]    [Pg.62]    [Pg.81]   
See also in sourсe #XX -- [ Pg.241 , Pg.242 , Pg.245 , Pg.247 , Pg.248 , Pg.251 , Pg.252 , Pg.254 , Pg.255 , Pg.257 , Pg.258 ]




SEARCH



Atom-at-a-time chemistry

Atom-at-a-time studies

Experimental studies. One-atom-at-a-time techniques

One atom at a time

One-atom-at-a-time chemistry

© 2024 chempedia.info