Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

At Los Alamos

Originally this resource, the Periodic Table, was created by Robert Husted at Los Alamos National Laboratory during his time as a Graduate Research Assistant. [Pg.226]

Homogeneous Aqueous Reactors. As a part of the research on neutron multiphcation at Los Alamos in the 1940s, a small low power reactor was built using a solution of uranium salt. Uranyl nitrate [36478-76-9] U02(N0 2> dissolved in ordinary water, resulted in a homogeneous reactor, having uniformly distributed fuel. This water boiler reactor was spherical. The 235u... [Pg.222]

The determination of critical si2e or mass of nuclear fuel is important for safety reasons. In the design of the atom bombs at Los Alamos, it was cmcial to know the critical mass, ie, that amount of highly enriched uranium or plutonium that would permit a chain reaction. A variety of assembhes were constmcted. Eor example, a bare metal sphere was found to have a critical mass of approximately 50 kg, whereas a natural uranium reflected 235u sphere had a critical mass of only 16 kg. [Pg.224]

A unique problem arises when reducing the fissile isotope The amount of that can be reduced is limited by its critical mass. In these cases, where the charge must be kept relatively small, calcium becomes the preferred reductant, and iodine is often used as a reaction booster. This method was introduced by Baker in 1946 (54). Researchers at Los Alamos National Laboratory have recently introduced a laser-initiated modification to this reduction process that offers several advantages (55). A carbon dioxide laser is used to initiate the reaction between UF and calcium metal. This new method does not requite induction heating in a closed bomb, nor does it utilize iodine as a booster. This promising technology has been demonstrated on a 200 g scale. [Pg.321]

In view of the success of von Neumann s machine-based hydrodynamics in 1944, and at about the time when the fission bomb was ready, some scientists at Los Alamos were already thinking hard about the possible design of a fusion bomb. Von Neumann invited two of them, Nicholas Metropolis and Stanley Frankel, to try to model the immensely complicated issue of how jets from a fission device might initiate thermonuclear reactions in an adjacent body of deuterium. Metropolis linked... [Pg.465]

This kind of simulation requires massive computer power, and much of it is done on so-called supercomputers . This is a reason why much recent research of this kind has been done at Los Alamos. In a survey of research in the American national laboratories, the then director of the Los Alamos laboratory, Siegfried Hecker (1990) explains that the laboratory has worked closely with all supercomputer vendors over the years, typically receiving the serial No. I machine for each successive model . He goes on to exemplify the kinds of problems in materials science that these extremely powerful machines can handle. [Pg.482]

There are numerous early scientific works concerning the presence of shock waves and the influence of explosions, impacts, and shock waves on matter. The earliest work, however, did not lead to a delineation of the phenomenon as a distinct scientific enterprise. This distinction rests with a group of visionary scientists assembled at Los Alamos for the development of the atomic bomb during World War II. Having learned the methods and developed the technology to explosively load samples in a precise and reproducible manner, they realized that they had in their hands, for the first time, the ability to study matter in an entirely new range of pressure. After several precursor publications beginning in 1955, the existence of the new scientific field was reported to the world in the classic work by Melvin Rice, John Walsh, and... [Pg.6]

The high explosives, baratol or Composition B-3, are used to produce the plane wave loading into the driver plates. These explosives have been widely studied in substantial work at Los Alamos. Plane waves are introduced into the explosive pads with either P-22 or P-40 plane-wave generators developed at Los Alamos. The Bear system is based on the 56 mm diameter of the P-22, while the larger sample size Bertha system is based on the 102 mmdiam of the P-40. More details on sample dimensions are reported by Graham [87G03]. [Pg.152]

On January 9,1964, a test was run at Los Alamos Scientific Laboratory to measure the acoustic sound levels developed during the release of gaseous hydrogen at high flow rates. The released hydrogen ignited and exploded. [Pg.21]

Reider et al. (1965) describe the incident at Los Alamos Laboratory in Jackass Flats, Nevada. An experiment was conducted on January 9, 1964, to test a rocket nozzle, primarily to measure the acoustic sound levels in the test-cell area which occurred during the release of gaseous hydrogen at high flow rates. Hydrogen discharges were normally flared, but, in order to isolate the effect of combustion... [Pg.21]

Ground breaking for the Clinton Laboratories, what Oak Ridge was originally called, occurred in Eebruai y 1943. Whereas the Manhattan Project at Los Alamos served as the center of weapons design,... [Pg.817]

Oppenheimer. Like the Chicago-based scientists before him, Oppenheimer and his researchers often clashed with Groves and the project engineers, who preferred to compartmentalize and control information about the project rather than exchange it freely among the scientists. At Los Alamos, Oppenheimer s approach prevailed. [Pg.851]

Other important historical landmarks include the founding, in 1984, of the Santa Fe Institute, which is one of the leading interdisciplinary centers for complex systems theory research the first conference devoted solely to research in cellular automata (which is a prototypical mathematical model of complex systems), organized by Farmer, Toffoli and Wolfram at MIT in 1984 [farmer84] and the first artificial life conference, organized by Chri.s Langton at Los Alamos National Laboratory, in 1987 [lang89]. [Pg.4]

The process of nuclear fission was discovered more than half a century ago in 1938 by Lise Meitner (1878-1968) and Otto Hahn (1879-1968) in Germany. With the outbreak of World War II a year later, interest focused on the enormous amount of energy released in the process. At Los Alamos, in the mountains of New Mexico, a group of scientists led by J. Robert Oppenheimer (1904-1967) worked feverishly to produce the fission, or atomic, bomb. Many of the members of this group were exiles from Nazi Germany. They were spurred on by the fear that Hitler would obtain the bomb first Their work led to the explosion of the first atomic bomb in the New Mexico desert at 5 30 a.m. on July 16,1945. Less than a month later (August 6,1945), the world learned of this new weapon when another bomb was exploded... [Pg.523]

Large-scale plutonium recovery/processing facilities originated at Los Alamos and Hanford as part of the Manhattan Project in 1943. Hanford Operations separated plutonium from irradiated reactor fuel, whereas Los Alamos purified plutonium, as well as recovered the plutonium from scrap and residues. In the 1950 s, similar processing facilities were constructed at Rocky Flats and Savannah River. [Pg.345]

Figure 2. Flow of Material in Scrap Recovery at Los Alamos... Figure 2. Flow of Material in Scrap Recovery at Los Alamos...
Early experimental work in electrorefining at Los Alamos by Mullins et-all ) demonstrated that americium could be partitioned between molten plutonium and a molten NaCl-KCl salt containing Pu+3 ions, and Knighton et-al(8), working at ANL on molten salt separation processes for fuel reprocessing, demonstrated that americium could be extracted from Mg-Zn-Pu-Am alloys with immiscible molten magnesium chloride salts. Work... [Pg.382]

The work presented in this article represents the combined effort of a large number of dedicated scientific workers at many Department of Energy facilities located throughout the United States. Particular credit must be given to the staff at Los Alamos, Argonne, Rocky Flats, Livermore, and Hanford. Without their diligent effort the pyrochemical process technologies described above would not have been developed. [Pg.402]


See other pages where At Los Alamos is mentioned: [Pg.12]    [Pg.28]    [Pg.50]    [Pg.63]    [Pg.77]    [Pg.133]    [Pg.12]    [Pg.179]    [Pg.224]    [Pg.192]    [Pg.15]    [Pg.88]    [Pg.127]    [Pg.465]    [Pg.521]    [Pg.522]    [Pg.37]    [Pg.55]    [Pg.144]    [Pg.851]    [Pg.726]    [Pg.728]    [Pg.29]    [Pg.346]    [Pg.346]    [Pg.347]    [Pg.354]    [Pg.361]    [Pg.379]    [Pg.395]    [Pg.405]   
See also in sourсe #XX -- [ Pg.532 , Pg.568 ]




SEARCH



Los Alamos

© 2024 chempedia.info