Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric Diels-Alder reaction chiral auxiliaries

A. Asymmetric Diels-Alder Reactions Chiral Auxiliaries... [Pg.971]

Asymmetric Diels-Alder reactions using a dienophile containing a chiral auxiliary were developed more than 20 years ago. Although the auxiliary-based Diels-Alder reaction is still important, it has two drawbacks - additional steps are necessary, first to introduce the chiral auxiliary into the starting material, and then to remove it after the reaction. At least an equimolar amount of the chiral auxiliary is, moreover, necessary. After the discovery that Lewis acids catalyze the Diels-Alder reaction, the introduction of chirality into such catalysts has been investigated. The Diels-Alder reaction utilizing a chiral Lewis acid is truly a practical synthetic transformation, not only because the products obtained are synthetically useful, but also because a catalytic amount of the chiral component can, in theory, produce a huge amount of the chiral product. [Pg.4]

Lewis acid-mediated asymmetric Diels-Alder reactions between 2H-azirines 59, bearing chiral auxiliaries, with enophiles such as 60 afforded mixtures of bicyclic aziridine-2-carboxylates 61 (Scheme 3.20) [68]. 8-Phenylmenthol appeared to be the auxiliary of choice in this reaction in terms of yield and diastereoselectivity. [Pg.81]

It has been shown that the sulfinyl group present as chiral auxiliary either in dienophiles or in dienes is very useful for controlling the enantio- and diastereofacial selectivity in the asymmetric Diels-Alder reaction [43]. A wide variety of enantiomerically pure cyclohexadienedicarboxylates has been produced by cycloaddition of the sulfinylmaleate 39 with several dienes under catalyzed... [Pg.112]

Clay-catalyzed asymmetric Diels-Alder reactions were investigated by using chiral acrylates [10]. Zn(II)- and Ti(IV)-K-10 montmorillonite, calcined at 55 °C, did not efficiently catalyze the cycloadditions of cyclopentadiene (1) with acrylates that incorporate large-size chiral auxiliaries such as cA-3-neopentoxyisobornyl acrylate (2) and (-)-menthyl acrylate (3, R = H) (Figure 4.1). This result was probably due to diffusion problems. [Pg.145]

Asymmetric Diels-Alder reactions have been performed by using either chiral dienophiles or chiral dienes in the presence or the absence of catalysts.47 The progress in this field is remarkable catalytic asymmetric Diels-Alder reactions are generally carried out either by the use of chiral dienophiles or by the use of chiral dienes. Here, the reactions of chiral nitroalkenes with dienes or the reactions of nitroalkenes with chiral dienes are discussed. Many different chiral auxiliaries are now available, and some of them have been used in asymmetric Diels-Alder reactions of nitroalkenes. [Pg.243]

Dienes with Chiral Auxiliaries The use of dienes with the chiral auxiliary attached to the C-l position of the dienes is the most popular in asymmetric Diels-Alder reactions.59 In 1980, Trost reported high asymmetric induction in the Diels-Alder reaction using l-(S)-0-methylmandeloxy-l,4-butadiene59a However, the result obtained by Trost et al. has remained unique for more than a decade, at least in terms of enantioselectivity. The asymmetric Diels-Alder reaction of chiral diene-amines with nitroalkenes gives aminocyclohexenes with good diastereoselectivity (Eq. 8.37).60 The development in the area of chiral dienes is slow it may be due to the difficulty of preparing these compounds. [Pg.248]

For acrylates, or type I reagents, applied in asymmetric Diels-Alder reactions, several chiral auxiliaries such as menthol derivatives, camphor derivatives,16,3 and oxazolidinones4 are available. Carbohydrate compounds have also been reported as chiral auxiliaries in a recent publication, although the stereoselectivity was not good.5 Here are examples in which asymmetric Diels-... [Pg.269]

Chiral oxazolidine compounds have also been used as chiral auxiliaries for asymmetric Diels-Alder reactions. Adam et al.8 demonstrated the cycloaddition of optically active 2,3-dimethyl oxazolidine derivatives with singlet oxygen. As shown in Scheme 5-9, the reaction of chiral substrate 39 with singlet oxygen provides product 40 in high diastereomeric ratio. [Pg.273]

Asymmetric Diels-Alder reactions. Unlike methyl crotonate, which is a weak dienophile, chiral (E)-crotonyl oxazolidinones when activated by a dialkylaluminum chloride (1 equiv.) are highly reactive and diastereoselective dienophiles. For this purpose, the unsaturated imides formed from oxazolidinones (Xp) derived from (S)-phenylalanol show consistently higher diastereoselectivity than those derived from (S)-valinol or (IS, 2R)-norephedrine. The effect of the phenyl group is attributed in part at least to an electronic interaction of the aromatic ring. The reactions of the unsaturated imide 1 shown in equation (I) are typical of reactions of unsaturated N-acyloxazolidinones with cyclic and acyclic dienes. All the Diels-Alder reactions show almost complete endo-selectivity and high diastereoselectivity. Oxazolidinones are useful chiral auxiliaries for intramolecular Diels-Alder... [Pg.244]

Among chiral auxiliaries, l,3-oxazolidine-2-thiones (OZTs) have attracted much interest for their various applications in different synthetic transformations.2 Such simple structures, directly related to far better known chiral oxazolidinones,11,12,57 have been explored in asymmetric Diels-Alder reactions and asymmetric alkylations, but mainly in condensation of their /V-acyl derivatives with aldehydes. Chiral OZTs have shown interesting characteristics in anti-selective aldol reactions58 or combined asymmetric addition. [Pg.146]

In this section, the literature about Diels-Alder reactions will be presented in a conceptual and illustrative way. After a profound introduction dealing with the development of mechanistic understanding of the Diels-Alder reaction, some interesting recent synthetic developments and applications will be presented. The reaction types and fields of interest are structured in such a way that they can be easily linked to ongoing research from the past ten years. Special attention will be paid to the application of chiral auxiliaries and chiral Lewis acids in asymmetric Diels-Alder reactions. [Pg.338]

Schlessinger and Bergstrom146 reported some asymmetric Diels-Alder reactions of several polystyrene bound furans to which a chiral auxiliary had been attached with methyl acrylate. The adducts were obtained with de values of more than 99%, as was determined after cleavage of the adducts from the resin. [Pg.380]

Sudo and Saigo153 reported the application of ds-2-amino-3,3-dimethyl-l-indanol derived l,3-oxazolidin-2-one 231 as a chiral auxiliary in asymmetric Diels-Alder reactions. The TV-crotonyl and TV-acryloyl derivatives were reacted with cyclopentadiene, 1,3-cyclohexadiene, isoprene and 2,3-dimethyl-l,3-butadiene, using diethylaluminum chloride as the Lewis acid catalyst. The reactions afforded the expected cycloadducts in moderate to high yields (33-97%) with high endo selectivities and high de values (92% to >98%). [Pg.383]

A wide variety of chiral sulfinyl substituents have been employed as chiral auxiliaries on both dienes162 and dienophiles163 in asymmetric Diels-Alder reactions. Carreno and colleagues164, for example, used Diels-Alder reactions of (Ss)-2-(p-tolylsulfinyl)-1,4-naphthoquinone (249) to separate racemic mixtures of a wide variety of diene ena-tiomers 250a and 250b via kinetic resolution and to obtain enantiomerically enriched... [Pg.386]

Brimble and coworkers172 reported the asymmetric Diels-Alder reactions between quinones 265 bearing a menthol chiral auxiliary and cyclopentadiene (equation 73). When zinc dichloride or zinc dibromide was employed as the Lewis acid catalyst, the reaction proceeded with complete endo selectivity, but with only moderate diastereofacial selectivity affording 3 1 and 2 1 mixtures of 266 and 267 (dominant diastereomer unknown), respectively. The use of stronger Lewis acids, such as titanium tetrachloride, led to the formation of fragmentation products. Due to the inseparability of the two diastereomeric adducts, it proved impossible to determine which one had been formed in excess. [Pg.391]

Taguchi and coworkers175 studied the Lewis acid catalyzed asymmetric Diels-Alder reactions of chiral 2-fluoroacrylic acid derivatives with isoprene and cyclopentadiene. When a chiral l,3-oxazolidin-2-one and diethylaluminum chloride were used as the chiral auxiliary and the Lewis acid catalyst, respectively, a de of 90% was observed for the reaction with isoprene. The reaction with cyclopentadiene afforded a 1 1 mixture of endo and exo isomers with de values of 95% and 96%, respectively. The endo/exo selectivity was improved by using 8-phenylmenthol as the chiral auxiliary. Thus, the reaction... [Pg.392]

Brimble and coworkers176 studied the asymmetric Diels-Alder reactions of cyclopentadiene with chiral naphthoquinones 272 bearing different chiral auxiliaries. The highest endo and facial selectivities were obtained using zinc dichloride as the Lewis acid catalyst and (—)-pantolactone as the chiral auxiliary. Thus, the reaction between cyclopentadiene and 272 afforded a 98 2 mixture of 273 and 274 (equation 76). The chiral auxiliary was removed easily by lithium borohydride reduction. [Pg.393]

Oppolzer and colleagues performed pioneering work on the application of chiral sultam based dienophiles in asymmetric Diels-Alder reactions. The bomanesultam based dienophiles provided excellent de values in the Lewis acid mediated Diels-Alder reactions with a wide variety of dienes179. The efficiency of the simpler toluene-2,a-sultam based dienophiles was also studied180. Chiral auxiliary 282 proved superior to 283 and 284 in the aluminum Lewis acid catalyzed Diels-Alder reactions of its A-acryloyl derivative with cyclopentadiene, 1,3-butadiene and isoprene, affording the adducts with >90% de. [Pg.395]

Arai and coworkers197 reported the utilization of a chiral pyrrole sulfoxide as a chiral auxiliary in the asymmetric Diels-Alder reactions of its /V-cinnamoyl and /V-crotonyl derivatives 313 with cyclopentadiene which gave 314-317 (equation 87). The results have been summarized in Table 18. The yield as well as the endo/exo selectivity and the de proved to depend on the type and amount of Lewis acid used. [Pg.402]

Nieman and Keay198 reported the use of c/.v,c/s-spiro 4,4]nonanc-1, 6-diol as a new chiral auxiliary to be used in asymmetric Diels-Alder reactions. Their best results in a series of reactions between chiral acrylates and cyclopentadiene were obtained when the pivalate ester of ds,ds-spiro[4,4]nonane-l,6-diol was used as the chiral auxiliary. When 318 was treated with cyclopentadiene, the expected endo adduct 319 was obtained with more than 97% de (equation 88). [Pg.402]

Mur 207), has received renewed interest in recent years. A fine review covering the intermolecular asymmetric Diels-Alder reaction was compiled by Mori 208>. In this article the use of terpenes and carbohydrates as chiral auxiliaries is discussed no amino acid derivatives are mentioned in this context. A chiral a-hydroxycarboxylic acid derivative was also used to achieve an asymmetric Diels-Alder reaction 209). High asymmetric induction could be detected in the intramolecular Diels-Alder reaction of chiral molecules. [Pg.224]

Oppolzefs chiral auxiliary,6 (-)-2,10-camphorsultam, is useful in the asymmetric Diels-Alder reaction,3 4 and for the preparation of enantiomerically pure p-substituted carboxylic acids7 and diols,8 in the stereoselective synthesis of A2-isoxazolines,9 and in the preparation of N-fluoro (-)-2,10-camphorsultam, an enantioselective fluorinating reagent.10... [Pg.156]

Novel bidentate chiral Lewis acids derived from 1.8-naphthalenediylbis(dichloroborane) and modified amino acids as chiral auxiliary have been successfully utilized as effective catalysts for the asymmetric Diels-Alder reaction of a,[ -unsaturated aldehydes. The enantioselectivity is highly sensitive to the kind of chiral amino acids. Moderate enantioselectivity was obtained with the tryptophan-derived ligand for the endo adduct, but amino acids without aromatic groups... [Pg.470]

An extensive review of recent advances in the area of asymmetric Diels-Alder reactions has been published.205 Sterically constrained tricyclic 2-oxazolidmones serve as excellent chiral auxiliaries for asymmetric Diels-Alder reactions.206 The Diels-Alder reactions of (—)-(a,. 7, )-colchicine (109) with hetero- and carbo-dienophiles show... [Pg.452]

The intermolecular Diels-Alder reaction between the dibromoenone (111) and dienes (112) provides access to bicyclo[5.4.0]undecane systems (113) that are common core structures of many natural products (Scheme 32).118 The alio-threonine-derived O-(/ -biphenyl carbonyl oxy)-/i-phenyloxazaborolidi none catalyses the enan-tioselective Diels-Alder reaction of acyclic enones with dienes.119 The reversal of facial selectivity in the Diels-Alder cycloaddition of a semicyclic diene with a bro-moenone was induced by the presence of the bromo substituent in the dienophile.120 Mixed Lewis acid catalyst (AlBr3/AIMe3) catalyses the Diels-Alder reaction of hindered silyloxydienes with substituted enones to produce highly substituted cyclohexenes.121 Chiral /V-enoyl sultams have been used as chiral auxiliaries in the asymmetric Diels-Alder reactions with cyclopentadiene.122... [Pg.370]

The discovery that chiral Lewis acids can catalyze the asymmetric Diels-Alder reaction is a major milestone for the scale up and practice of this reaction on an industrial scale. The use of such a catalyst obviates the need for a chiral auxiliary on the diene or dienophile. The vast majority of chiral auxiliaries that have been used in the Diels-Alder reaction are either not commercially available or are expensive. In addition, the chemical steps needed to attach and remove the chiral auxiliary increase the cost and complexity of the synthesis. Chiral catalysts may also be recovered or recycled, further decreasing cost.47 Research in this area is very active, and catalysts based on a number of metals (Table 26.1) have shown encouraging asymmetric induction.21 Our understanding of the role these catalysts play in the asymmetric induction of Diels-Alder reactions is increasing, and more general reagents should appear. 27-48 54... [Pg.505]

A different approach to the asymmetric Diels-Alder reaction involves the use of the sultam derived from CSA. Lewis acid-promoted reaction with dienes followed by reductive removal of the chiral auxiliary is analogous to that previously discussed for the sultone. Smith has successfully utilized this approach to synthesize the chiral acid used in the synthesis of the immunosuppressant FK-506 (eq 16). ... [Pg.174]

Asymmetric Diels-Alder Reaction of Unsaturated Carboxylic Acids. A chiral acyloxyborane (CAB) complex (1) prepared from mono(2,6-dimethoxybenzoyl)tartaric acid and 1 equiv of borane is an excellent catalyst for the Diels-Alder reaction of a,p-unsaturated carboxylic acids and dienes. In the CAB-catalyzed Diels-Alder reaction, adducts are formed in a highly diastereo- and enantioselective manner under mild reaction conditions (eq 2). The reaction is catalytic 10 mol % of catalyst is sufficient for efficient conversion, and the chiral auxiliary can be recovered and reused. [Pg.230]

At first sight, the use of a chiral catalyst appears to be the potentially most attractive method to achieve asymmetric Diels-Alder reactions of prochiral dienes and dienophiles. Compared to the stoichiometric use of a covalently attached auxiliary, two synthetic steps would be avoided. However, analysis of the resulting enantiomer mixture and purification of the major product may be more laborious. [Pg.376]


See other pages where Asymmetric Diels-Alder reaction chiral auxiliaries is mentioned: [Pg.308]    [Pg.186]    [Pg.187]    [Pg.76]    [Pg.78]    [Pg.1065]    [Pg.267]    [Pg.268]    [Pg.171]    [Pg.843]    [Pg.1079]    [Pg.468]    [Pg.455]    [Pg.455]    [Pg.472]    [Pg.401]    [Pg.207]   
See also in sourсe #XX -- [ Pg.4 , Pg.607 ]




SEARCH



Asymmetric Diels-Alder

Asymmetric chirality

Asymmetric reactions chiral auxiliaries

Chiral auxiliaries Diels-Alder reaction

Chiral auxiliaries reaction

Chirality Diels-Alder reaction

Chirality auxiliaries

Reaction auxiliaries

Reactions chiral

© 2024 chempedia.info