Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aryl ethers, preparation

The same products can be also obtained from 267 and benzaldehyde. This behavior indicates the presence of an active methylene group and supports the thiazolone structure (267a). Alkyl or aryl ethers of 267 are prepared by two different procedures (Scheme 139). [Pg.304]

Aryl ethers are best prepared by the Williamson method (Section 16 6) Alkylation of the hydroxyl oxygen of a phenol takes place readily when a phenoxide anion reacts with an alkyl halide... [Pg.1008]

The reaction between an alkoxide ion and an aryl halide can be used to prepare alkyl aryl ethers only when the aryl halide is one that reacts rapidly by the addition-elim mation mechanism of nucleophilic aromatic substitution (Section 23 6)... [Pg.1008]

Decafluorobiphenyl [434-90-2] C F C F (mol wt, 334.1 mp, 68°C bp, 206°C), can be prepared by I Jllmann coupling of bromo- [344-04-7] chloro- [344-07-0] or iodopentafluorobenzene [827-15-6] with copper. This product shows good thermal stabiHty decafluorobiphenyl was recovered unchanged after 1 h below 575°C (270). Decafluorobiphenyl-based derivatives exhibit greater oxidative stabiHty than similar hydrocarbon compounds (271). Therm ally stable poly(fluorinated aryl ether) oligomers prepared from decafluorobiphenyl and bisphenols show low dielectric constant and moisture absorption which are attractive for electronic appHcations (272). [Pg.328]

Cyclic aryl ether ketones have been prepared from l,2-bis(4- uoroben2oyl)ben2ene and bisphenols under pseudo high dilution conditions. These materials undergo ring-opening polymeri2ation in the presence of an anionic catalyst (87). [Pg.333]

With Phenols. The 2-hydroxylethyl aryl ethers are prepared from the reaction of ethylene oxide with phenols at elevated temperatures and pressures (78,79). 2-Phenoxyethyl alcohol is a perfume fixative. The water-soluble alkylphenol ethers of the higher poly(ethylene glycol)s are important surface-active agents. They are made by adding ethylene oxide to the alkylphenol at ca 200°C and 200—250 kPa (>2 atm), using sodium acetate or... [Pg.453]

Not surprisingly a number of other poly(aryl ethers) have been prepared from aromatic dihalides not containing sulphone links. For example, a number have been prepared from difluorobenzophenone and, in general, it is found that such materials have TgS about 30-40°C lower than the corresponding sulphone polyether. In fact it is generally found that the higher Tg values are obtained with the sulphone polyethers. [Pg.599]

Section 24.11 Phenoxide anions are nucleophilic toward alkyl halides, and the preparation of alkyl aryl ethers is easily achieved under Sn2 conditions. [Pg.1018]

The new fluorescent poly(aryl ethers) derived from nonfluorescent monomers have gained significant attention from polymer scientists [20]. These polymers are prepared by the polymerization of phenolphthalein and its derivatives with activated aromatic difluorides. [Pg.36]

The advantage of the activated displacement polymerization is the facile incorporation of different and unconventional structural units in the polymer backbone. Most of the heteroarylene activated polyethers prepared by this route are soluble in many organic solvents. The solubility behavior of new polyethers is shown in Table 8. In contrast to many polyphenylenequi-noxalines, poly(aryl ether phenylquinoxalines) prepared by the quionoxaline activated displacement reaction are soluble in NMP. Solubility in NMP is important since it is frequently used for polymer processing in the microelectronics industry [27]. [Pg.50]

In Figure 13.2, the intensity of the ion at m/z 170 represents a molecular ion of an aromatic compound. The characteristic losses from the molecular ion (M - 1, M - 28, and M - 29) suggest an aromatic aldehyde, phenol, or aryl ether. The molecular formula of Ci2H 0O is suggested by the molecular ion at m/z 170, which can be either a biphenyl ether or a phenylphenol. The simplest test to confirm the structure is to prepare a TMS derivative, even though m/z 11 strongly indicates the diaryl ether. [Pg.259]

The methanol-ether filtrate has a slight yellow color. It is not known what impurity is removed by this solvent pair. However, the submitters found that this treatment improved the yield of several aryl fluorides prepared according to the present procedure. [Pg.14]

Hedrick et al. reported imide aryl ether ketone segmented block copolymers.228 The block copolymers were prepared via a two-step process. Both a bisphenol-A-based amorphous block and a semicrystalline block were prepared from a soluble and amorphous ketimine precursor. The blocks of poly(arylene ether ether ketone) oligomers with Mn range of 6000-12,000 g/mol were coreacted with 4,4,-oxydianiline (ODA) and pyromellitic dianhydride (PMDA) diethyl ester diacyl chloride in NMP in the presence of A - me thy 1 morphi 1 i nc. Clear films with high moduli by solution casting and followed by curing were obtained. Multiphase morphologies were observed in both cases. [Pg.360]

Tosylate is displaced by weak oxyanions with little elimination in aprotic solvents, providing alternative routes to polymer-bound esters and aryl ethers. Alkoxides, unfortunately, give significant functional yields of (vinyl)polystyrene under the same conditions. Phosphines and sulfides can also be prepared from the appropriate anions (57), the latter lipophilic enough for phase-transfer catalysis free from poisonning by released tosylate. [Pg.28]


See other pages where Aryl ethers, preparation is mentioned: [Pg.68]    [Pg.215]    [Pg.218]    [Pg.68]    [Pg.215]    [Pg.218]    [Pg.1008]    [Pg.1009]    [Pg.535]    [Pg.537]    [Pg.331]    [Pg.93]    [Pg.1008]    [Pg.1009]    [Pg.296]    [Pg.36]    [Pg.39]    [Pg.39]    [Pg.43]    [Pg.494]    [Pg.89]    [Pg.207]    [Pg.130]    [Pg.223]    [Pg.155]    [Pg.71]    [Pg.171]    [Pg.541]    [Pg.651]    [Pg.652]    [Pg.655]   
See also in sourсe #XX -- [ Pg.1008 , Pg.1018 ]

See also in sourсe #XX -- [ Pg.1008 , Pg.1018 ]

See also in sourсe #XX -- [ Pg.1008 , Pg.1018 ]

See also in sourсe #XX -- [ Pg.954 , Pg.956 , Pg.964 ]

See also in sourсe #XX -- [ Pg.1002 , Pg.1003 , Pg.1012 ]

See also in sourсe #XX -- [ Pg.926 , Pg.927 , Pg.936 ]




SEARCH



Alkyl-aryl ethers, preparation

Allyl aryl ethers, preparation

Aryl ethers

Aryl ethers, cleavage preparation

Aryl preparation

Ethere preparation

Ethers preparation

Preparation of Aryl Ethers

Preparing Ethers

© 2024 chempedia.info