Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heck reaction aryl bromides

Beller et al. have shown for the first time that palladium colloids are effective catalysts for the olefination of aryl bromides (Heck reaction). Reetz et al. have studied Suzuki and Heck reactions catalyzed by preformed palladium clusters and palladium/nickel bimetallic clusters and further progress was achieved by Reetz and Lohmert using propylene carbonate stabilized nanostructured palladium clusters as catalysts in Heck reactions. In addition, the use of nanostructured titanium clusters in McMurry-type coupling reactions has been demonstrated by Reetz et... [Pg.921]

The original Sonogashira reaction uses copper(l) iodide as a co-catalyst, which converts the alkyne in situ into a copper acetylide. In a subsequent transmeta-lation reaction, the copper is replaced by the palladium complex. The reaction mechanism, with respect to the catalytic cycle, largely corresponds to the Heck reaction.Besides the usual aryl and vinyl halides, i.e. bromides and iodides, trifluoromethanesulfonates (triflates) may be employed. The Sonogashira reaction is well-suited for the synthesis of unsymmetrical bis-2xy ethynes, e.g. 23, which can be prepared as outlined in the following scheme, in a one-pot reaction by applying the so-called sila-Sonogashira reaction ... [Pg.158]

Palladium(II) complexes provide convenient access into this class of catalysts. Some examples of complexes which have been found to be successful catalysts are shown in Scheme 11. They were able to get reasonable turnover numbers in the Heck reaction of aryl bromides and even aryl chlorides [22,190-195]. Mechanistic studies concentrated on the Heck reaction [195] or separated steps like the oxidative addition and reductive elimination [196-199]. Computational studies by DFT calculations indicated that the mechanism for NHC complexes is most likely the same as that for phosphine ligands [169], but also in this case there is a need for more data before a definitive answer can be given on the mechanism. [Pg.15]

Pd/P(t-Bu)., in the presence of Cy2NMe, is an unusually mild and versatile catalyst for Heck reactions of aryl chlorides (Tables 1 and 2) (as well as for room-temperature reactions of aryl bromides).21 22 23 Example A, the coupling of chlorobenzene with butyl methacrylate, illustrates the application of this method to the stereoselective synthesis of a trisubstituted olefin a-methylcinnamic acid derivatives are an important family of compounds that possess biological activity (e.g., hypolipidemic24 and antibiotic25) and serve as intermediates in the synthesis of pharmaceuticals (e.g., Sulindac, a non-steroidal anti-inflammatory drug26). Example B, the coupling of 4-chlorobenzonitrile with styrene, demonstrates that Pd/P(t-Bu). can catalyze the Heck reaction of activated aryl chlorides at room temperature. [Pg.35]

Microwave-assisted Heck reaction of (hetero)aryl bromides with N,N-dimethyl-2-[(2-phenylvinyl)oxy]ethanamine, using Herrmann s palladacycle as a precatalyst, yielded the corresponding /3-(hetero)arylated Heck products in a good EjZ selectivity (Scheme 79) [90]. The a/yd-regioselectivity can be explained by the chelation control in the insertion step. This selectivity is better than 10/90 when no severe steric hindrance is introduced in the (hetero)aryl bromides. The process does not require an inert atmosphere. There is evidence that a Pd(0)/Pd(II)- and not Pd(II)/Pd(IV)-based catalytic cycle is involved. Similarly, other j6-amino-substituted vinyl ethers such as... [Pg.196]

Regarding bis-NHC chelating ligands, several structures that differ in the motifs used for the enlargement of the tether have been proposed as catalysts for the Mizoroki-Heck reaction. They range from non-functionalised aliphatic chains [23-25] to phenyl [26], biphenyl [27], binaphthyls [28] and to chains containing additional coordination positions like ethers [29], amines [30], and pyridines in an evolution towards pincer complexes [31-35], In most cases, the activity of aryl bromides in Mizoroki-Heck transformations was demonstrated to be from moderate to high, while the activation of chlorides was non-existent or poor (Scheme 6.7). [Pg.162]

The Heck reaction has been applied to synthesis of intermediates and in multistage syntheses. Some examples are given in Scheme 8.9. Entries 1 and 2 illustrate both the (3-regioselectivity and selectivity for aryl iodides over bromides. Entries 3 and 4 show conditions that proved favorable for cyclohexene. These examples also indicate preferential syn Pd-H elimination, since this accounts for formation of the 3-substituted cyclohexene as the major product. [Pg.720]

Palladium-catalyzed carbon-carbon cross-coupling reactions are among the best studied reactions in recent decades since their discovery [102, 127-130], These processes involve molecular Pd complexes, and also palladium salts and ligand-free approaches, where palladium(O) species act as catalytically active species [131-135]. For example, the Heck reaction with aryl iodides or bromides is promoted by a plethora of Pd(II) and Pd(0) sources [128, 130], At least in the case of ligand-free palladium sources, the involvement of soluble Pd NPs as a reservoir for catalytically active species seems very plausible [136-138], Noteworthy, it is generally accepted that the true catalyst in the reactions catalyzed by Pd(0) NPs is probably molecular zerovalent species detached from the NP surface that enter the main catalytic cycle and subsequently agglomerate as N Ps or even as bulk metal. [Pg.17]

A perhaps more exotic substrate for the Heck reaction is 1,2-cyclohexanedione [25], The reactivity of this molecule under Heck coupling conditions can probably be attributed to its resonance enol form. This reaction is attractive, because the literature contains relatively few examples of the preparation of 3-aryl-l,2-cyclohexane-diones. Yields varied from good to modest when classic heating and electron-rich aryl bromides were used, and reaction times typically ranged from 16 to 48 h. Similar yields were obtained under continuous microwave irradiation with a single-mode microwave reactor for 10 min at 40-50 W (Eq. 11.10) [25],... [Pg.384]

Traditional Heck arylation of the corresponding ethyl vinyl ether afforded high yields with most of the aryl bromides investigated (Eq. 11.11). Under continuous singlemode microwave treatment the transformations were complete within 10-12 min [25], Heck reactions without solvent in a domestic microwave oven have been examined by Diaz-Ortiz [26]. The reactions were conducted in closed vessels with reported temperatures of 150 °C. A study was performed in which reactions performed with microwave irradiation were compared with oil-bath-heated reactions with identical reaction times and temperatures. The isolated yields tended to substantially favor the microwave-heated reactions (Eq. 11.12). [Pg.385]

Several intramolecular Heck reactions involve aryl halides cyclizing onto indole rings. Grigg first described the simple Heck cyclizations of 254 and 255 [270], and this was followed by similar Heck reactions reported by Kozikowski and Ma on the bromide corresponding to 254 and the IV-benzylindole 256 [271,272]. These investigators also observed cyclization to the C-3 position in a Heck reaction of indole 257, and they prepared a series of peripheral-type benzodiazepine receptors 258 using this chemistry. For example, 258 (n = 3, R = n-Pr) is obtained in 81% yield. [Pg.130]

Ohta s group coupled aryl bromides such as 2-bromonitrobenzene with benzofuran [85]. The heteroaryl Heck reaction took place at the more electron-rich C(2) position of benzofuran. They later described the heteroaryl Heck reactions of chloropyrazines with both furan and benzofuran [86],... [Pg.286]

The catalytic Pd complex and the aryl bromide together suggest the first step is oxidative addition of Pd(0) to the C5-Br bond. (The reduction of Pd(II) to Pd(0) can occur by coordination to the amine, p-hydride elimination to give a Pd(II)-H complex and an iminium ion, and deprotonation of Pd(IE)-H to give Pd(0).) The C10-C11 k bond can then insert into the C5-Pd bond to give the C5-C10 bond. P-Hydride elimination then gives the Cl 1-C12 n bond and a Pd(II)-H, which is deprotonated by the base to regenerate Pd(0). The overall reaction is a Heck reaction. [Pg.215]

In the Mizoroki-Heck reaction aryl bromides and activated aryl chlorides could be employed with moderate turnovers. This holds true for both the complexes of monodentate such as 60 as well as the complexes of chelating ones... [Pg.43]

The choice of an ionic liquid was shown to be critical in experiments with [NBuJBr (TBAB, m.p. 110°C) as a catalyst carrier to isolate a cyclometallated complex homogeneous catalyst, tra .s-di(ri-acetato)-bis[o-(di-o-tolylphosphino) benzyl] dipalladium (II) (Scheme 26), which was used for the Heck reaction of styrene with aryl bromides and electron-deficient aryl chlorides. The [NBu4]Br displayed excellent stability for the reaction. The recycling of 1 mol% of palladium in [NBu4]Br after the reaction of bromobenzene with styrene was achieved by distillation of the reactants and products from the solvent and catalyst in vacuo. Sodium bromide, a stoichiometric salt byproduct, was left in the solvent-catalyst system. High catalytic activity was maintained even after the formation of visible palladium black after a fourth run and after the catalyst phase had turned more viscous after the sixth run. The decomposition of the catalyst and the formation of palladium... [Pg.216]


See other pages where Heck reaction aryl bromides is mentioned: [Pg.388]    [Pg.422]    [Pg.251]    [Pg.35]    [Pg.930]    [Pg.160]    [Pg.161]    [Pg.165]    [Pg.189]    [Pg.189]    [Pg.197]    [Pg.19]    [Pg.360]    [Pg.362]    [Pg.512]    [Pg.513]    [Pg.108]    [Pg.111]    [Pg.113]    [Pg.379]    [Pg.55]    [Pg.384]    [Pg.105]    [Pg.132]    [Pg.292]    [Pg.284]    [Pg.154]    [Pg.52]    [Pg.54]    [Pg.29]    [Pg.175]    [Pg.158]    [Pg.183]    [Pg.123]    [Pg.318]   
See also in sourсe #XX -- [ Pg.121 ]




SEARCH



Aryl Heck reaction

Aryl bromides

Aryl bromides arylation

Aryl bromides reactions

Arylation Heck reaction

Bromide reaction

Bromides Heck reaction

Heck Reactions of Non-activated Aryl Bromides

Heck aryl bromides

Heck arylation

Heck arylations

© 2024 chempedia.info