Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Essentiality arsenic

Arsenic Essential ultratrace element in red algae, chick, rat, pig, goat, and probably bumans. Deficiency results in depressed growth and increased mortality. Moderately toxic to plants, highly toxic to mammals. Serious pollution problems in some areas sources include mining, burning coal, impure sulfuric add, insecticides, and herbicides. [Pg.946]

Uthus, E. O., Arsenic essentiality and factors affecting its importance. In Arsenic Exposure and Health, Chappell, W. R., Abernathy, C. O., and Cothern, C. R., Eds., Science and Technology Letters, Northwood, pp. 199-208, 1994. [Pg.774]

Uthus EO (1992) Evidence for arsenic essentiality. Environmental Geochemistry and Health 14 55-58. [Pg.1363]

In the eighties a technical panel of EPA reviewed several studies on arsenic as a possible essential element in human diet. Since inconsistent results were found in animal studies and many uncertainties remained, the panel determined "that at present, the case for arsenic essentiality is not proven for animals, and is even less certain for humans" (Gostomski, 1987). [Pg.293]

Nitrogen is unusual in forming so many oxides. The acidity of the Group V oxides falls from phosphorus, whose oxides are acidic, through arsenic and antimony whose oxides are amphoteric, to the basic oxide ofbismuth. This change is in accordance with the change from the non-metallic element, phosphorus, to the essentially metallic element, bismuth. The +5 oxides are found, in each case, to be more acidic than the corresponding + 3 oxides. [Pg.228]

Cobalt compounds have been in use for centuries, notably as pigments ( cobalt blue ) in glass and porcelain (a double silicate of cobalt and potassium) the metal itself has been produced on an industrial scale only during the twentieth century. Cobalt is relatively uncommon but widely distributed it occurs biologically in vitamin B12 (a complex of cobalt(III) in which the cobalt is bonded octahedrally to nitrogen atoms and the carbon atom of a CN group). In its ores, it is usually in combination with sulphur or arsenic, and other metals, notably copper and silver, are often present. Extraction is carried out by a process essentially similar to that used for iron, but is complicate because of the need to remove arsenic and other metals. [Pg.401]

The preferable theoretical tools for the description of dynamical processes in systems of a few atoms are certainly quantum mechanical calculations. There is a large arsenal of powerful, well established methods for quantum mechanical computations of processes such as photoexcitation, photodissociation, inelastic scattering and reactive collisions for systems having, in the present state-of-the-art, up to three or four atoms, typically. " Both time-dependent and time-independent numerically exact algorithms are available for many of the processes, so in cases where potential surfaces of good accuracy are available, excellent quantitative agreement with experiment is generally obtained. In addition to the full quantum-mechanical methods, sophisticated semiclassical approximations have been developed that for many cases are essentially of near-quantitative accuracy and certainly at a level sufficient for the interpretation of most experiments.These methods also are com-... [Pg.365]

Elemental selenium has been said to be practically nontoxic and is considered to be an essential trace element however, hydrogen selenide and other selenium compounds are extremely toxic, and resemble arsenic in their physiological reactions. [Pg.96]

Arsenic is another element with different bioavailabiUty in its different redox states. Arsenic is not known to be an essential nutrient for eukaryotes, but arsenate (As(V)) and arsenite (As(III)) are toxic, with the latter being rather more so, at least to mammals. Nevertheless, some microorganisms grow at the expense of reducing arsenate to arsenite (81), while others are able to reduce these species to more reduced forms. In this case it is known that the element can be immobilized as an insoluble polymetallic sulfide by sulfate reducing bacteria, presumably adventitiously due to the production of hydrogen sulfide (82). Indeed many contaminant metal and metalloid ions can be immobilized as metal sulfides by sulfate reducing bacteria. [Pg.36]

Arsenic. Arsenic is under consideration for inclusion as an essential element. No clear role has been estabHshed, but aresenic, long thought to be a poison, may be involved in methylation of macromolecules and as an effector of methionine metaboHsm (158,160). Most research has focused on the toxicity or pharmaceutical properties of arsenic (158). [Pg.388]

Under unusual circumstances, toxicity may arise from ingestion of excess amounts of minerals. This is uncommon except in the cases of fluorine, molybdenum, selenium, copper, iron, vanadium, and arsenic. Toxicosis may also result from exposure to industrial compounds containing various chemical forms of some of the minerals. Aspects of toxicity of essential elements have been pubhshed (161). [Pg.388]

Silver compounds having anions that are inherently toxic, eg, silver arsenate and silver cyanide, can cause adverse health effects. The reported rat oral LD values for silver nitrate, silver arsenate [13510-44-6] and silver cyanide are 500—800 (29), 200—400 (29), and 123 mg/kg (30), respectively. Silver compounds or complexes ia which the silver ion is not biologically available, eg, silver sulfide and silver thiosulfate complexes, are considered to be without adverse health effects and essentially nontoxic. [Pg.91]

Arsenic compounds must be considered extremely poisonous. Dust or fumes irritate mucous membranes and lead to arsenical poisoning. When swallowed they irritate the stomach and affect the heart, Hver, and kidneys. Nervousness, thirst, vomiting, diarrhea, cyanosis, and coUapse are among the symptoms of arsenical poisoning (3). In spite of the toxicity of arsenic compounds, there is evidence that arsenic is an essential nutrient for several animal species (4). [Pg.332]

Copper. The physical properties of pure copper are given in Table 11. The mechanical properties of pure copper are essentially the same as those for ClOl and CllO. The coppers represent a series of alloys ranging from the commercially pure copper, ClOl, to the dispersion hardened alloy C157. The difference within this series is the specification of small additions of phosphoms, arsenic, cadmium, tellurium, sulfur, zirconium, as well as oxygen. To be classified as one of the coppers, the alloy must contain at least 99.3% copper. [Pg.229]

Although most of the macrocycles that contain phosphorus or arsenic which have thus far been prepared, are primarily transition metals binders, two compounds have been prepared which are essentially crown ethers containing phosphorus. Kudrya, Shtepanek and Kirsanovhave prepared two compounds which are essentially polyoxygen macrocycles but which contain one or two methylphosphonic acid esters as part of the ring. These two macrocycles are shown below as 7d and 17 and are both prepared by the reaction of 2,2 [oxybis(ethyleneoxy)] bisphenolate with methylphosphonic dichloride in a mixture of acetonitrile and benzene. The crystalline monomer 16) and dimer 17) were isolated in 17% and 11% yields respectively as indicated in Eq. (6.13). [Pg.273]

Carbon disulfide gives an essentially quantitative yield of carbon tetralluoride and sulfur on reaction with sulfur tetrafluoride at 450 C in the presence of arsenic trifluoride as a catalyst. At lower temperature, bis(fnfiuoromethyl) polysulfides are formed [//] (equation 15). [Pg.268]

The magnetic criterion is particularly valuable because it provides a basis for differentiating sharply between essentially ionic and essentially electron-pair bonds Experimental data have as yet been obtained for only a few of the interesting compounds, but these indicate that oxides and fluorides of most metals are ionic. Electron-pair bonds are formed by most of the transition elements with sulfur, selenium, tellurium, phosphorus, arsenic and antimony, as in the sulfide minerals (pyrite, molybdenite, skutterudite, etc.). The halogens other than fluorine form electron-pair bonds with metals of the palladium and platinum groups and sometimes, but not always, with iron-group metals. [Pg.313]

Both alkyl and aryl metals have been studied, but not a very wide range of compounds. Several studies of triphenylarsene and triphenylstibine have been done. Methyl and ethyl compounds of arsenic, germanium, mercury, bismuth, and lead essentially complete the list. In virtually all cases the results have been clouded by difficulties in effecting chemical separation without altering the product distribution. The results do, nonetheless, lead to valid and important conclusions. [Pg.221]

Liu J, TB Gladysheva, L Lee, BP Rosen (1995) Identification of an essential cysteinyl residue in the ArsC arsenate reductase plasmid R 773. Biochemistry 34 13472-13476. [Pg.159]

The simplest analytical method is direct measurement of arsenic in volatile methylated arsenicals by atomic absorption [ 11 ]. A slightly more complicated system, but one that permits differentiation of the various forms of arsenic, uses reduction of the arsenic compounds to their respective arsines by treatment with sodium borohydride. The arsines are collected in a cold trap (liquid nitrogen), then vaporised separately by slow warming, and the arsenic is measured by monitoring the intensity of an arsenic spectral line, as produced by a direct current electrical discharge [1,12,13]. Essentially the same method was proposed by Talmi and Bostick [10] except that they collected the arsines in cold toluene (-5 °C), separated them on a gas chromatography column, and used a mass spectrometer as the detector. Their method had a sensitivity of 0.25 xg/l for water samples. [Pg.457]

U.S. EPA (U.S. Environmental Protection Agency). 1987. Special Report on Ingested Inorganic Arsenic Skin Cancer and Nutritional Essentiality. U.S. EPA, Risk Assessment Forum. Wash., D.C. [Pg.118]


See other pages where Essentiality arsenic is mentioned: [Pg.103]    [Pg.38]    [Pg.44]    [Pg.54]    [Pg.95]    [Pg.130]    [Pg.48]    [Pg.67]    [Pg.267]    [Pg.981]    [Pg.37]    [Pg.143]    [Pg.746]    [Pg.748]    [Pg.151]    [Pg.152]    [Pg.138]    [Pg.396]    [Pg.11]    [Pg.173]    [Pg.593]    [Pg.53]    [Pg.27]    [Pg.305]    [Pg.425]    [Pg.513]    [Pg.452]    [Pg.535]   
See also in sourсe #XX -- [ Pg.322 ]

See also in sourсe #XX -- [ Pg.397 , Pg.398 ]




SEARCH



© 2024 chempedia.info