Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron arsenic complexes

Although native arsenic, bismuth, iron, and other elements are known, they are not common. For commercial purposes, these elements are derived from more common, more complex, natural compounds. [Pg.16]

In contrast, the introduction of inorganic complexes as therapies was usually based on an observed medicinal effect. Two of the earliest inorganic remedies involved the use of mercurous chloride as a diuretic, and iron complexes as mineral supplements, introduced about 500 years ago. More recently, gold complexes have been used as antibacterials, in particular for the treatment of tuberculosis at the beginning of the twentieth century. Other traditional inorganic drugs include the use of arsenic complexes, such as arsephenamaine, to treat syphihs [1] and antimony compounds for the treatment of leishmaniasis. [Pg.178]

Water, wastewater, and brine FIA 0.7 pg P (from 21 replicates of a 5.0 pg P L-i standard) Silica, arsenate, and iron at high concentration (>30 mg L ) Formation of antimony-phosphomolybdate complex reduced by ascorbic acid APHA-AWWA-WEF 2005 Method 4500-P G [128]... [Pg.240]

In acid leaching, sulphuric acid is used in a complex ion-exchange or solvent extraction process to produce yellowcake of very high purity. Various metals (such as vanadium, arsenic, nickel, iron, copper, etc.) may be leached in this process. Chemicals involved in this process include sulphuric acid, ammonium nitrate, sodium chloride, amines, alcohols, kerosene, and ammonia. Considerable process water has to be derived from reclaim water of the tailings and returned to the mine for preparing the slurry. [Pg.559]

Similar to reactions with arsenic selenide anions described in the previous section, pentacarbonyliron or the hydrido-iron tetracarbonyl anion react with arsenic tellurides to produce complex iron carbonyl-bound tellurium arsenic anions (Scheme 85). Unlike the selenium analogs, the isolated complex for Te does not exhibit Fe-As bonds. [Pg.69]

Cobalt compounds have been in use for centuries, notably as pigments ( cobalt blue ) in glass and porcelain (a double silicate of cobalt and potassium) the metal itself has been produced on an industrial scale only during the twentieth century. Cobalt is relatively uncommon but widely distributed it occurs biologically in vitamin B12 (a complex of cobalt(III) in which the cobalt is bonded octahedrally to nitrogen atoms and the carbon atom of a CN group). In its ores, it is usually in combination with sulphur or arsenic, and other metals, notably copper and silver, are often present. Extraction is carried out by a process essentially similar to that used for iron, but is complicate because of the need to remove arsenic and other metals. [Pg.401]

Metals less noble than copper, such as iron, nickel, and lead, dissolve from the anode. The lead precipitates as lead sulfate in the slimes. Other impurities such as arsenic, antimony, and bismuth remain partiy as insoluble compounds in the slimes and partiy as soluble complexes in the electrolyte. Precious metals, such as gold and silver, remain as metals in the anode slimes. The bulk of the slimes consist of particles of copper falling from the anode, and insoluble sulfides, selenides, or teUurides. These slimes are processed further for the recovery of the various constituents. Metals less noble than copper do not deposit but accumulate in solution. This requires periodic purification of the electrolyte to remove nickel sulfate, arsenic, and other impurities. [Pg.176]

Although trialkyl- and triarylbismuthines are much weaker donors than the corresponding phosphoms, arsenic, and antimony compounds, they have nevertheless been employed to a considerable extent as ligands in transition metal complexes. The metals coordinated to the bismuth in these complexes include chromium (72—77), cobalt (78,79), iridium (80), iron (77,81,82), manganese (83,84), molybdenum (72,75—77,85—89), nickel (75,79,90,91), niobium (92), rhodium (93,94), silver (95—97), tungsten (72,75—77,87,89), uranium (98), and vanadium (99). The coordination compounds formed from tertiary bismuthines are less stable than those formed from tertiary phosphines, arsines, or stibines. [Pg.131]

The solution should be free from the following, which either interfere or lead to an unsatisfactory deposit silver, mercury, bismuth, selenium, tellurium, arsenic, antimony, tin, molybdenum, gold and the platinum metals, thiocyanate, chloride, oxidising agents such as oxides of nitrogen, or excessive amounts of iron(III), nitrate or nitric acid. Chloride ion is avoided because Cu( I) is stabilised as a chloro-complex and remains in solution to be re-oxidised at the anode unless hydrazinium chloride is added as depolariser. [Pg.515]

The reaction is a sensitive one, but is subject to a number of interferences. The solution must be free from large amounts of lead, thallium (I), copper, tin, arsenic, antimony, gold, silver, platinum, and palladium, and from elements in sufficient quantity to colour the solution, e.g. nickel. Metals giving insoluble iodides must be absent, or present in amounts not yielding a precipitate. Substances which liberate iodine from potassium iodide interfere, for example iron(III) the latter should be reduced with sulphurous acid and the excess of gas boiled off, or by a 30 per cent solution of hypophosphorous acid. Chloride ion reduces the intensity of the bismuth colour. Separation of bismuth from copper can be effected by extraction of the bismuth as dithizonate by treatment in ammoniacal potassium cyanide solution with a 0.1 per cent solution of dithizone in chloroform if lead is present, shaking of the chloroform solution of lead and bismuth dithizonates with a buffer solution of pH 3.4 results in the lead alone passing into the aqueous phase. The bismuth complex is soluble in a pentan-l-ol-ethyl acetate mixture, and this fact can be utilised for the determination in the presence of coloured ions, such as nickel, cobalt, chromium, and uranium. [Pg.684]

Sulphuric acid is not recommended, because sulphate ions have a certain tendency to form complexes with iron(III) ions. Silver, copper, nickel, cobalt, titanium, uranium, molybdenum, mercury (>lgL-1), zinc, cadmium, and bismuth interfere. Mercury(I) and tin(II) salts, if present, should be converted into the mercury(II) and tin(IV) salts, otherwise the colour is destroyed. Phosphates, arsenates, fluorides, oxalates, and tartrates interfere, since they form fairly stable complexes with iron(III) ions the influence of phosphates and arsenates is reduced by the presence of a comparatively high concentration of acid. [Pg.690]

Speisses These are alloys of heavy metals like iron, cobalt and nickel with arsenic and antimony, occasionally also with tin. Lead smelting typically yields this complex source... [Pg.473]

In the wetlands of Idaho, the formation of an Fe(III) precipitate (plaque) on the surface of aquatic plant roots (Typha latifolia, cat tail and Phalaris arundinacea, reed canary grass) may provide a means of attenuation and external exclusion of metals and trace elements (Hansel et al, 2002). Iron oxides were predominantly ferrihydrite with lesser amounts of goethite and minor levels of siderite and lepidocrocite. Both spatial and temporal correlations between As and Fe on the root surfaces were observed and arsenic existed as arsenate-iron hydroxide complexes (82%). [Pg.241]

X-ray powder diagrams obtained by the Guinier method show the tris (O-ethyl dithiocarbonato) complexes of chro-mium(III), indium(III), cobalt(III), iron(III), arsenic(III), and antimony(III) to be isomorphous. Carrai and Gottardi have determined the structure of the arsenic(III)18 and anti-mony(III)19 complexes. Crystallographic data for the cobalt(III) and chromium(III) ethylxanthate complexes are given by Derenzini20 and Franzini and Schiaffino,21 respectively. [Pg.53]

In REACT, we prepare the calculation by disenabling the redox couple between trivalent and pentavalent arsenic (arsenite and arsenate, respectively). As well, we disenable the couples for ferric iron and cupric copper, since we will not consider either ferrous or cupric species. We load dataset FeOH+.dat , which contains the reactions from the Dzombak and Morel (1990) surface complexation model, including those for which binding constants have only been estimated. The procedure is... [Pg.457]

Appelo CAJ, VanDerWeiden MJJ, Toumassat C, Charlet L (2002) Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ Sci Techno 36 3096-3103 Ardizzone S, Formaro L (1983) Temperature induced phase transformation of metastable Fe(OH), in the presence of ferrous ions. Mat Chem Phys 8 125-133... [Pg.402]

A second example of a membrane-bound arsenate reductase was isolated from Sulfurospirillum barnesii and was determined to be a aiPiyi-heterotrimic enzyme complex (Newman et al. 1998). The enzyme has a composite molecular mass of 100kDa, and a-, P-, and y-subunits have masses of 65, 31, and 22, respectively. This enzyme couples the reduction of As(V) to As(III) by oxidation of methyl viologen, with an apparent Kra of 0.2 mM. Preliminary compositional analysis suggests that iron-sulfur and molybdenum prosthetic groups are present. Associated with the membrane of S. barnesii is a h-type cytochrome, and the arsenate reductase is proposed to be linked to the electron-transport system of the plasma membrane. [Pg.229]

Solubility data (pA sp) for two dozen hexacyanoferrate(II) and hexacyanoferrate(III) salts, and Pourbaix (pe/pH) diagrams for iron-cyanide-water, iron-sulfide-cyanide-(hydr)oxide, iron-arsenate-cyanide-(hydr)oxide, and iron-copper-cyanide-sulfide-(hydr)oxide, are given in a review ostensibly dedicated to hydrometallurgical extraction of gold and silver. " The electrochemistry of Prussian Blue and related complexes, in the form of thin films on electrodes, has been reviewed. ... [Pg.422]

Equilibrium constants for formation of iron(III) complexes of several oxoanions, of phosphorus, arsenic, sulfur, and selenium, have been reported. The kinetics and mechanism of complex formation in the iron(III)-phosphate system in the presence of a large excess of iron(III) involve the formation of a tetranuclear complex, proposed to be [Fc4(P04)(0H)2(H20)i6]. The high stability of iron(III)-phosphate complexes has prompted suggestions that iron-containing mixed hydroxide or hydroxy-carbonate formulations be tested for treatment of hyperphosphatemia. " ... [Pg.489]


See other pages where Iron arsenic complexes is mentioned: [Pg.841]    [Pg.100]    [Pg.148]    [Pg.263]    [Pg.339]    [Pg.841]    [Pg.4583]    [Pg.315]    [Pg.309]    [Pg.488]    [Pg.189]    [Pg.29]    [Pg.13]    [Pg.348]    [Pg.312]    [Pg.41]    [Pg.270]    [Pg.696]    [Pg.149]    [Pg.346]    [Pg.42]    [Pg.68]    [Pg.872]    [Pg.1479]    [Pg.304]    [Pg.49]    [Pg.203]    [Pg.89]    [Pg.141]   
See also in sourсe #XX -- [ Pg.92 ]




SEARCH



Arsenate complexes

Arsenic complexes

Iron complexes arsenic ligands

© 2024 chempedia.info