Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclopentanes aromatization

After cyclization, the cyclohexane should rapidly undergo dehydrogenation to the analogous aromatic. Cyclopentanes will undergo hydroisomerization to cyclohexane, followed by dehydrogenation to the aromatic. [Pg.1975]

Aromatics - Benzene, Methylbenzene (Toluene) Dimethylbenzene (Xylenes) Naphthenes - Cyclopentane, Cyclohexane... [Pg.95]

Hydrocarbons, compounds of carbon and hydrogen, are stmcturally classified as aromatic and aliphatic the latter includes alkanes (paraffins), alkenes (olefins), alkynes (acetylenes), and cycloparaffins. An example of a low molecular weight paraffin is methane [74-82-8], of an olefin, ethylene [74-85-1], of a cycloparaffin, cyclopentane [287-92-3], and of an aromatic, benzene [71-43-2]. Cmde petroleum oils [8002-05-9], which span a range of molecular weights of these compounds, excluding the very reactive olefins, have been classified according to their content as paraffinic, cycloparaffinic (naphthenic), or aromatic. The hydrocarbon class of terpenes is not discussed here. Terpenes, such as turpentine [8006-64-2] are found widely distributed in plants, and consist of repeating isoprene [78-79-5] units (see Isoprene Terpenoids). [Pg.364]

The term naphthenic acid, as commonly used in the petroleum industry, refers collectively to all of the carboxyUc acids present in cmde oil. Naphthenic acids [1338-24-5] are classified as monobasic carboxyUc acids of the general formula RCOOH, where R represents the naphthene moiety consisting of cyclopentane and cyclohexane derivatives. Naphthenic acids are composed predorninandy of aLkyl-substituted cycloaUphatic carboxyUc acids, with smaller amounts of acycHc aUphatic (paraffinic or fatty) acids. Aromatic, olefinic, hydroxy, and dibasic acids are considered to be minor components. Commercial naphthenic acids also contain varying amounts of unsaponifiable hydrocarbons, phenoHc compounds, sulfur compounds, and water. The complex mixture of acids is derived from straight-mn distillates of petroleum, mosdy from kerosene and diesel fractions (see Petroleum). [Pg.509]

Catalytic Reforming. Worldwide, approximately 30% of commercial benzene is produced by catalytic reforming, a process ia which aromatic molecules are produced from the dehydrogenation of cycloparaffins, dehydroisomerization of alkyl cyclopentanes, and the cycHzation and subsequent dehydrogenation of paraffins (36). The feed to the catalytic reformer may be a straight-mn, hydrocracked, or thermally cracked naphtha fraction ia the... [Pg.40]

Saturated cyclic hydrocarbons, normally known as naphthenes, are also part of the hydrocarbon constituents of crude oils. Their ratio, however, depends on the crude type. The lower members of naphthenes are cyclopentane, cyclohexane, and their mono-substituted compounds. They are normally present in the light and the heavy naphtha fractions. Cyclohexanes, substituted cyclopentanes, and substituted cyclohexanes are important precursors for aromatic hydrocarbons. [Pg.13]

Facial selectivities of spiro[cyclopentane-l,9 -fluorene]-2-ones 30a-30e were studied by Ohwada [96, 97]. The carbonyl tz orbital can interact with the aromatic % orbital of the fluorene in a similar manner to spiro conjugation [98-102]. The ketones 30 were reduced to alcohols by the action of sodium borohydride in methanol at -43 °C. The anti-alcohol, i.e., the syn addition product of the reducing reagent with respect to the substituent, is favored in all cases, irrespective of the substituent at C-2 or C-4 of the fluorene ring (2-nitro 30b syn anti = 68 32), 4-nitro... [Pg.142]

Likewise it is possible to differentiate between substituted and unsubstituted alicycles using inclusion formation with 47 and 48 only the unbranched hydrocarbons are accommodated into the crystal lattices of 47 and 48 (e.g. separation of cyclohexane from methylcyclohexane, or of cyclopentane from methylcyclopentane). This holds also for cycloalkenes (cf. cyclohexene/methylcyclohexene), but not for benzene and its derivatives. Yet, in the latter case no arbitrary number of substituents (methyl groups) and nor any position of the attached substituents at the aromatic nucleus is tolerated on inclusion formation with 46, 47, and 48, dependent on the host molecule (Tables 7 and 8). This opens interesting separation procedures for analytical purposes, for instance the distinction between benzene and toluene or in the field of the isomeric xylenes. [Pg.82]

In alicyclic hydrocarbon solvents with aromatic solutes, energy transfer (vide infra) is unimportant and probably all excited solute states are formed on neutralization of solute cations with solute anions, which are formed in the first place by charge migration and scavenging in competition with electron solvent-cation recombination. The yields of naphthalene singlet and triplet excited states at 10 mM concentration solution are comparable and increase in the order cyclopentane, cyclohexane, cyclooctane, and decalin as solvents. Further, the yields of these... [Pg.82]

Alkylphosphanes, chelating, 42 482 Alkyl-substituted cyclopentanes, aromatization. [Pg.44]

For further contributions on the dia-stereoselectivity in electropinacolizations, see Ref. [286-295]. Reduction in DMF at a Fig cathode can lead to improved yield and selectivity upon addition of catalytic amounts of tetraalkylammonium salts to the electrolyte. On the basis of preparative scale electrolyses and cyclic voltammetry for that behavior, a mechanism is proposed that involves an initial reduction of the tetraalkylammonium cation with the participation of the electrode material to form a catalyst that favors le reduction routes [296, 297]. Stoichiometric amounts of ytterbium(II), generated by reduction of Yb(III), support the stereospecific coupling of 1,3-dibenzoylpropane to cis-cyclopentane-l,2-diol. However, Yb(III) remains bounded to the pinacol and cannot be released to act as a catalyst. This leads to a loss of stereoselectivity in the course of the reaction [298]. Also, with the addition of a Ce( IV)-complex the stereochemical course of the reduction can be altered [299]. In a weakly acidic solution, the meso/rac ratio in the EHD (electrohy-drodimerization) of acetophenone could be influenced by ultrasonication [300]. Besides phenyl ketone compounds, examples with other aromatic groups have also been published [294, 295, 301, 302]. [Pg.432]

Gasoline varies widely in composition, and even those with the same octane number may be quite different. The variation in aromatics content as well as the variation in the content of normal paraffins, branched paraffins, cyclopentane derivatives, and cyclohexane derivatives all involve characteristics of any one individual crude oil and influence the octane number of a gasoline. [Pg.69]

With platinum and palladium supported on acidic alumina, cyclopentanes are important intermediates of aromatization (44, 123-124). For example, n-heptane gave about 2-3 times more aromatic product than 2,4-dimethyl-pentane, whereas the formation of C5 cyclic products was about the same from both alkanes. Alkylcyclopentanes aromatized at a reasonable rate (123a). [Pg.314]

Aiicyclic. Closed ring structures that fall into one of three different subgroups (1) saturated cycloparaffms—also called naphthenes—such as cyclohexane or cyclopentane, and (2) cycloolefins such as cyclopen tadiene—but not to be confused with aromatic compounds with the benzene ring. [Pg.388]

Each fraction of distilled petroleum still contains a complex mixture of chemicals but they can be somewhat categorized. A certain sample of straight-run gasoline (light naphtha) might contain nearly 30 aliphatic, noncyclic hydrocarbons, nearly 20 cycloaliphatic hydrocarbons (mainly cyclopentanes and cyclohexanes) sometimes called naphthenes, and 20 aromatic compounds. [Pg.96]

In early measurements the solubility of [C2CiIm][PFg] in aromatic hydrocarbons (benzene, toluene, ethylbenzene, o-xylene, m-xylene, and p-xylene) and that of [C4QIm][PFg] in the same aromatic hydrocarbons, and in n-alkanes (pentane, hexane, heptane, and octane), and in cyclohydrocarbons (cyclopentane and cyclohexane) has been presented [96]. [Pg.37]

Starting from C5 molecules, dehydrocyclization (into cyclopentane and derivatives of cyclopentane) is also possible. From C6 on up, aromatization also occurs. These two reactions comprising a dehydrogenation step are only observable at temperatures which on most metals are higher than the region where hydrogenolysis (hydrocracking) is first observed. [Pg.179]


See other pages where Cyclopentanes aromatization is mentioned: [Pg.306]    [Pg.293]    [Pg.575]    [Pg.155]    [Pg.306]    [Pg.293]    [Pg.575]    [Pg.155]    [Pg.11]    [Pg.181]    [Pg.69]    [Pg.177]    [Pg.2079]    [Pg.173]    [Pg.132]    [Pg.82]    [Pg.282]    [Pg.53]    [Pg.212]    [Pg.96]    [Pg.45]    [Pg.51]    [Pg.176]    [Pg.177]    [Pg.306]    [Pg.307]    [Pg.99]    [Pg.264]    [Pg.205]    [Pg.68]    [Pg.94]    [Pg.26]    [Pg.321]    [Pg.69]   
See also in sourсe #XX -- [ Pg.54 ]




SEARCH



Cyclopentane

Cyclopentanes

© 2024 chempedia.info