Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromaticity related terms

A The term aromatic relates to the fragrant aromas associated with some (but by no means all) of these compounds. [Pg.497]

Pyrolysis products such as benzene, toluene, styrene, and naphthalene were observed. The amount of these aromatic compounds formed directly reflects the concentration of chlorine atoms and their distribution in the CPE. The composition and structure calculations were based on those degraded trimer peak intensities obtained by Py-GC. This Py-GC method can be used to quantitatively determine the chlorine content in CPE. The same method can also explore the microstructure through number-average sequence length (NASL) of ethylene and vinyl chloride monomers. Other structure-related terms, such as the percentage of grouped vinyl chloride monomers, i.e., the percentage of chlorine atoms structured as polyvinyl chloride (PVC)-like structures, can also be calculated. [Pg.105]

Most polyesters (qv) are based on phthalates. They are referred to as aromatic-aHphatic or aromatic according to the copolymerized diol. Thus poly(ethylene terephthalate) [25038-59-9] (PET), poly(butyelene terephthalate) [24968-12-5] (PBT), and related polymers are termed aromatic-aHphatic polyester resins, whereas poly(bisphenol A phthalate)s are called aromatic polyester resins or polyarylates PET and PBT resins are the largest volume aromatic-aHphatic products. Other aromatic-aHphatic polyesters (65) include Eastman Kodak s Kodar resin, which is a PET resin modified with isophthalate and dimethylolcyclohexane. Polyarylate resins are lower volume specialty resins for high temperature (HDT) end uses (see HeaT-RESISTANT POLYAffiRS). [Pg.267]

Reactivity and orientation in electrophilic aromatic substitution can also be related to the concept of hardness (see Section 1.2.3). Ionization potential is a major factor in determining hardness and is also intimately related to the process of (x-complex formation when an electrophile interacts with the n HOMO to form a new a bond. In MO terms, hardness is related to the gap between the LUMO and HOMO, t] = (sujmo %omo)/2- Thus, the harder a reactant ring system is, the more difficult it is for an electrophile to complete rr-bond formation. [Pg.570]

The term aromatic is used for historical reasons to refer to the class of compounds related structurally to benzene. Aromatic compounds are systematically named according to TUPAC rules, but many common names are also used. Disubstituted benzenes are named as ortho (1,2 disubstituted), meta (1,3 disub-stituted), or para (1,4 disubstituted) derivatives. The C6H5- unit itself is referred to as a phenyl group, and the Cb f5CH2— unit is a benzyl group. [Pg.538]

The latest catalyst development is the contact DeH-9, which in terms of activity and stability is comparable with DeH-7 but with improved selectivity (fewer iso- and cycloparaffins and aromatics). This contact has been produced since 1990 and probably used commercially since 1992 [59]. In Table 7 the composition of the dehydrogenation products in relation to the catalyst and the application of the DeFine step is summarized. Table 8 shows the performance data for various catalysts [10] in relation to LAB production. [Pg.60]

In graphite each carbon atom is bound to three others in the same plane and here the assumption of inversion of a puckered layer is improbable, because of the number of atoms involved. A probable structure is one in which each carbon atom forms two single bonds and one double bond with other atoms. These three bonds should lie in a plane, with angles 109°28 and 125°16,l which are not far from 120°. Two single bonds and a double bond should be nearly as stable as four single bonds (in diamond), and the stability would be increased by the resonance terms arising from the shift of the double bond from one atom to another. But this problem and the closely related problem of the structure of aromatic nuclei demand a detailed discussion, perhaps along the lines indicated, before they can be considered to be solved. [Pg.81]

Besides the weak bonds listed in the previous table, there are other multiple bonds that endow the molecules in which they are situated with a positive enthalpy of formation. Such compounds are termed endothermic compounds. The danger they represent does not necessarily come from the fact that they are unstable, but is related to the exothermicity of their decomposition reaction. The most convincing examples are the acetylenic compounds, and in particular, acetylene. It is also the case for ethylene, aromatic compounds, imines and nitriles. [Pg.97]

The next step in the development of the extrathermodynamic approach was to find a suitable expression for the equilibrium constant in terms of physicochemical and conformational (steric) properties of the drug. Use was made of a physicochemical interpretation of the dissociation constants of substituted aromatic acids in terms of the electronic properties of the substituents. This approach had already been introduced by Hammett in 1940 [14]. The Hammett equation relates the dissociation constant of a substituted benzoic acid (e.g. meta-chlorobenzoic acid) to the so-called Hammett electronic parameter a ... [Pg.387]

Due to its particular composition, biodiesel is biodegradable and allows reduced emissions, in terms of particulates and polycyclic aromatic hydrocarbons. Instead, the results of the combustion of biodiesel are contentious in relation to so-called NOx emissions, where it has been observed that such emissions are more or less increased, with respect to conventional diesel, depending on the characteristics of the engine in which it is used ... [Pg.271]

Both low molecular weight materials [145] and polymers [146,147] can show liquid crystallinity. In the case of polymers, it frequently occurs in very stiff chains such as the Kevlars and other aromatic polyamides. It can also occur with flexible chains, however, and it is these flexible chains in the elastomeric state that are the focus of the present discussion. One reason such liquid-crystalline elastomers are of particular interest is the fact that (i) they can be extensively deformed (as described for elastomers throughout this chapter), (ii) the deformation produces alignment of the chains, and (iii) alignment of the chains is central to the formation of liquid-crystalline phases. Because of fascinating properties related to their novel structures, liquid-crystalline elastomers have been the subject of numerous studies, as described in several detailed reviews [148-150]. The purpose here will be to mention some typical elastomers exhibiting liquid crystallinity, to describe some of their properties, and to provide interpretations of some of these properties in molecular terms. [Pg.365]

The synergistic action of a phenol and aromatic amine mixture on hydrocarbon oxidation was found by Karpukhina et al. [16]. A synergistic effect of binary mixtures of some phenols and aromatic amines in oxidizing hydrocarbon is related to the interaction of inhibitors and their radicals [16-26]. In the case of a combined addition of phenyl-A-2-naphthylamine and 2,6-bis(l,l-dimethylethyl)phenol to oxidizing ethylbenzene (v, = const, 343 K), the consumption of amine begins only after the phenol has been exhausted [16], in spite of the fact that peroxyl radicals interact with amine more rapidly than with phenol (7c7 (amine) = 1.3 x 105 and /c7 (phenol) = 1.3 x 104 L mol 1 s respectively 333 K). This phenomenon can be explained in terms of the fast equilibrium reaction [27-30] ... [Pg.623]

As a result of steric constraints imposed by the channel structure of ZSM-5, new or improved aromatics conversion processes have emerged. They show greater product selectivities and reaction paths that are shifted significantly from those obtained with constraint-free catalysts. In xylene isomerization, a high selectivity for isomerization versus disproportionation is shown to be related to zeolite structure rather than composition. The disproportionation of toluene to benzene and xylene can be directed to produce para-xylene in high selectivity by proper catalyst modification. The para-xylene selectivity can be quantitatively described in terms of three key catalyst properties, i.e., activity, crystal size, and diffusivity, supporting the diffusion model of para-selectivity. [Pg.272]

The direct access to the electrical-energetic properties of an ion-in-solution which polarography and related electro-analytical techniques seem to offer, has invited many attempts to interpret the results in terms of fundamental energetic quantities, such as ionization potentials and solvation enthalpies. An early and seminal analysis by Case etal., [16] was followed up by an extension of the theory to various aromatic cations by Kothe et al. [17]. They attempted the absolute calculation of the solvation enthalpies of cations, molecules, and anions of the triphenylmethyl series, and our Equations (4) and (6) are derived by implicit arguments closely related to theirs, but we have preferred not to follow their attempts at absolute calculations. Such calculations are inevitably beset by a lack of data (in this instance especially the ionization energies of the radicals) and by the need for approximations of various kinds. For example, Kothe et al., attempted to calculate the electrical contribution to the solvation enthalpy by Born s equation, applicable to an isolated spherical ion, uninhibited by the fact that they then combined it with half-wave potentials obtained for planar ions at high ionic strength. [Pg.224]


See other pages where Aromaticity related terms is mentioned: [Pg.765]    [Pg.311]    [Pg.939]    [Pg.503]    [Pg.241]    [Pg.279]    [Pg.342]    [Pg.428]    [Pg.664]    [Pg.132]    [Pg.130]    [Pg.194]    [Pg.69]    [Pg.158]    [Pg.164]    [Pg.481]    [Pg.348]    [Pg.124]    [Pg.138]    [Pg.16]    [Pg.511]    [Pg.564]    [Pg.48]    [Pg.220]    [Pg.57]    [Pg.247]    [Pg.142]    [Pg.421]    [Pg.435]    [Pg.448]    [Pg.16]    [Pg.1245]    [Pg.252]    [Pg.1171]    [Pg.224]    [Pg.11]   
See also in sourсe #XX -- [ Pg.32 ]




SEARCH



© 2024 chempedia.info