Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactivity aromatic rings

Such a molecule can be stabilized by a system of delocalized Ji-electrons, which is closed into a toroid of 10 aromatic rings. Reactive sites are four CH groups, which are at the ends of this molecular tube. Such substances belong apparently to a new class of organic compounds, which is intermediate between planar polycyclic aromatic hydrocarbons and three-dimensional fullerenes, nanotubes. Quantum-chemical calculations of the electronic and spatial structure of C32H8 and some other molecules indicate that they have an increased reactivity and semiconductor properties. [Pg.301]

The transmetallation of various organometallic compounds (Hg, Tl, Sn, B, Si, etc.) with Pd(II) generates the reactive cr-aryl, alkenyl, and alkyl Pd compounds. These carbopalladation products can be used without isolation for further reactions. Pd(II) and Hg(II) salts have similar reactivity toward alkenes and aromatic compounds, but Hg(II) salts form stable mercuration products with alkenes and aromatic rings. The mercuration products are isolated and handled easily. On the other hand, the corresponding palladation products are too reactive to be isolated. The stable mercuration products can be used for various reactions based on facile transmetallation with Pd(II) salts to generate the very reactive palladation products 399 and 400 in rim[364,365]. [Pg.79]

The ij-arylpalladium bonds in these complexes are reactive and undergo insertion and substitution reactions, and the reactions offer useful methods for the regiospecific functionalization of the aromatic rings, although the reac-... [Pg.88]

Neither Friedel-Crafts acylation nor alkylation reactions can be earned out on mtroben zene The presence of a strongly deactivating substituent such as a nitro group on an aromatic ring so depresses its reactivity that Friedel-Crafts reactions do not take place Nitrobenzene is so unreactive that it is sometimes used as a solvent m Friedel-Crafts reactions The practical limit for Friedel-Crafts alkylation and acylation reactions is effectively a monohalobenzene An aromatic ring more deactivated than a mono halobenzene cannot be alkylated or acylated under Friedel-Crafts conditions... [Pg.505]

Carbocations usually generated from an alkyl halide and aluminum chloride attack the aromatic ring to yield alkylbenzenes The arene must be at least as reactive as a halobenzene Carbocation rearrangements can occur especially with primary alkyl hal ides... [Pg.510]

Arylamines contain two functional groups the amine group and the aromatic ring they are difunctional compounds The reactivity of the amine group is affected by its aryl substituent and the reactivity of the ring is affected by its amine substituent The same electron delocalization that reduces the basicity and the nucleophilicity of an arylamme nitrogen increases the electron density in the aromatic ring and makes arylamines extremely reactive toward electrophilic aromatic substitution... [Pg.939]

A reaction of aryl diazonium salts that does not involve loss of nitrogen takes place when they react with phenols and arylamines Aryl diazonium ions are relatively weak elec trophiles but have sufficient reactivity to attack strongly activated aromatic rings The reaction is known as azo coupling two aryl groups are joined together by an azo (—N=N—) function... [Pg.950]

A nitro group behaves the same way m both reactions it attracts electrons Reaction is retarded when electrons flow from the aromatic ring to the attacking species (electrophilic aromatic substitution) Reaction is facilitated when electrons flow from the attacking species to the aromatic ring (nucleophilic aromatic substitution) By being aware of the connection between reactivity and substituent effects you will sharpen your appreciation of how chemical reactions occur... [Pg.980]

In most of their reactions phenols behave as nucleophiles and the reagents that act on them are electrophiles Either the hydroxyl oxygen or the aromatic ring may be the site of nucleophilic reactivity m a phenol Reactions that take place on the ring lead to elec trophilic aromatic substitution Table 24 4 summarizes the behavior of phenols m reac tions of this type... [Pg.1002]

Fig. 13. Polymerization chemistry of phenol—formaldehyde condensation synthesis of novolac resia. The phenol monomer(s) are used ia stoichiometric excess to avoid geUation, although branching iavariably occurs due to the multiple reactive sites on the aromatic ring. Fig. 13. Polymerization chemistry of phenol—formaldehyde condensation synthesis of novolac resia. The phenol monomer(s) are used ia stoichiometric excess to avoid geUation, although branching iavariably occurs due to the multiple reactive sites on the aromatic ring.
Conversion of Aromatic Rings to Nonaromatic Cyclic Structures. On treatment with oxidants such as chlorine, hypochlorite anion, chlorine dioxide, oxygen, hydrogen peroxide, and peroxy acids, the aromatic nuclei in lignin typically ate converted to o- and -quinoid stmctures and oxinane derivatives of quinols. Because of thein relatively high reactivity, these stmctures often appear as transient intermediates rather than as end products. Further reactions of the intermediates lead to the formation of catechol, hydroquinone, and mono- and dicarboxyhc acids. [Pg.139]

The aromatic ring of a phenoxy anion is the site of electrophilic addition, eg, in methylolation with formaldehyde (qv). The phenoxy anion is highly reactive to many oxidants such as oxygen, hydrogen peroxide, ozone, and peroxyacetic acid. Many of the chemical modification reactions of lignin utilizing its aromatic and phenoHc nature have been reviewed elsewhere (53). [Pg.143]

Dinitrochlorobenzene can be manufactured by either dinitration of chlorobenzene in filming sulfuric acid or nitration ofy -nitrochlorobenzene with mixed acids. Further substitution on the aromatic ring is difficult because of the deactivating effect of the chlorine atom, but the chlorine is very reactive and is displaced even more readily than in the mononitrochlorobenzenes. [Pg.68]

OC-Methylstyrene. This compound is not a styrenic monomer in the strict sense. The methyl substitution on the side chain, rather than the aromatic ring, moderates its reactivity in polymerization. It is used as a specialty monomer in ABS resins, coatings, polyester resins, and hot-melt adhesives. As a copolymer in ABS and polystyrene, it increases the heat-distortion resistance of the product. In coatings and resins, it moderates reaction rates and improves clarity. Physical properties of a-methylstyrene [98-83-9] are shown in Table 12. [Pg.490]

The aromatic ring has high electron density. As a result of this electron density, toluene behaves as a base, not only in aromatic ring substitution reactions but also in the formation of charge-transfer (tt) complexes and in the formation of complexes with super acids. In this regard, toluene is intermediate in reactivity between benzene and the xylenes, as illustrated in Table 2. [Pg.175]

In this initial section the reactivities of the major types of azole aromatic rings are briefly considered in comparison with those which would be expected on the basis of electronic theory, and the reactions of these heteroaromatic systems are compared among themselves and with similar reactions of aliphatic and benzenoid compounds. Later in this chapter all the reactions are reconsidered in more detail. It is postulated that the reactions of azoles can only be rationalized and understood with reference to the complex tautomeric and acid-base equilibria shown by these systems. Tautomeric equilibria are discussed in Chapter 4.01. Acid-base equilibria are considered in Section 4.02.1.3 of the present chapter. [Pg.41]

Acid-catalyzed hydrogen exchange is used as a measure of the comparative reactivity of different aromatic rings (see Table 5). These reactions take place on the neutral molecules or, at high acidities, on the cations. At the preferred positions the neutral isoxazole, isothiazole and pyrazole rings are all considerably more reactive than benzene. Although the 4-position of isothiazole is somewhat less reactive than the 4-position in thiophene, a similar situation does not exist with isoxazole-furan ring systems. [Pg.57]

Other matters that are important include the ability of the electrophile to select among the alternative positions on a substituted aromatic ring. The relative reactivity of different substituted benzenes toward various electrophiles has also been important in developing a firm understanding of electrophilic aromatic substitution. The next section considers some of the structure-reactivity relationships that have proven to be informative. [Pg.557]

Part B of Table 12.2 gives some addition reaction rates. Comparison of entries 19 and 20 shows that the phenyl radical is much more reactive toward addition than the benzy 1 radical. Comparison of entries 22 and 23 shows that methyl radicals are less reactive than phenyl radicals in additions to an aromatic ring. Note that additions to aromatic rings are much slower than additions to alkenes. [Pg.690]

PMDI is produced on an industrial scale by the phosgenation of diamin-odiphenylmethane. Structure and molar mass of PMDI depend on the number of aromatic rings in the molecule. For PMDI the distribution of the three monomeric isomers has a great influence on the quality, because the reactivities of the various isomers (4,4 -, 2,4 - and 2,2 -MDI) differ significantly. The greater the portion of the 2,2 - and 2,4 -isomers, the lower is the reactivity. This can lead to different bonding strengths as well as to residual isomers in the produced wood-based panels. [Pg.1066]

As tannins contain many phenolic -type subunits (Fig. 3), one may be tempted to think that they will exhibit a similar reactive potential to that of phenol, and that therefore procedures used in standard PF production can be transferred to those containing tannin. This, however, is not the case. The real situation is that tannin is far more reactive than unsubstituted phenol due to the resorcinol and catchecol rings present in the tannin. This increase in hydroxyl substitution on the two aromatic rings affords an increase in reactivity to formaldehyde by 10 to 50... [Pg.1070]


See other pages where Reactivity aromatic rings is mentioned: [Pg.382]    [Pg.173]    [Pg.382]    [Pg.173]    [Pg.67]    [Pg.119]    [Pg.507]    [Pg.975]    [Pg.993]    [Pg.1290]    [Pg.269]    [Pg.557]    [Pg.33]    [Pg.101]    [Pg.330]    [Pg.358]    [Pg.175]    [Pg.427]    [Pg.218]    [Pg.219]    [Pg.340]    [Pg.18]    [Pg.218]    [Pg.258]    [Pg.522]    [Pg.539]    [Pg.551]    [Pg.551]    [Pg.561]    [Pg.882]   
See also in sourсe #XX -- [ Pg.986 , Pg.987 , Pg.988 , Pg.989 , Pg.990 , Pg.991 , Pg.992 , Pg.993 , Pg.994 , Pg.995 , Pg.996 ]




SEARCH



Aromatic ring reactivity trend

Aromaticity reactivity

Aromatics reactivity

Reactivity of aromatic ring

© 2024 chempedia.info