Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecules, model aromatic

In this model, reaction is considered to occur preferentially at that position in the aromatic molecule to which the approach of the electrophile causes the smallest increase in zero energy. In molecules possessing polar or dipolar groups, long range electrostatic forces will initially be the most important. [Pg.130]

Suspension Model of Interaction of Asphaltene and Oil This model is based upon the concept that asphaltenes exist as particles suspended in oil. Their suspension is assisted by resins (heavy and mostly aromatic molecules) adsorbed to the surface of asphaltenes and keeping them afloat because of the repulsive forces between resin molecules in the solution and the adsorbed resins on the asphaltene surface (see Figure 4). Stability of such a suspension is considered to be a function of the concentration of resins in solution, the fraction of asphaltene surface sites occupied by resin molecules, and the equilibrium conditions between the resins in solution and on the asphaltene surface. Utilization of this model requires the following (12) 1. Resin chemical potential calculation based on the statistical mechanical theory of polymer solutions. 2. Studies regarding resin adsorption on asphaltene particle surface and... [Pg.452]

No, K. T., J. A. Grant, M. S. Jhon, and H. A. Scheraga. 1990. Determination of Net Atomic Charges Using a Modified Partial Equalization of Orbital Electronegativity Method 2. Application to Ionic and Aromatic Molecules as Models for Polypeptides. J. Phys. Chem. 94, 4740-4746. [Pg.150]

Another aspect of dielectric relaxation in proteins should be considered. If in model solutions of aromatic molecules, dielectric relaxation occurs... [Pg.85]

The analysis of these phenomena requires the use of more complicated models which take into account the fact that at the moment of excitation individual aromatic molecules in the ensemble under study may interact differently with their environment." 7l The existence of a distribution of fluorophores differing in such interactions leads to inhomogeneous broadening of the spectra. Upon excitation by light whose energy is insufficient to excite all the fluorophores in the ensemble, there occurs a selection of those species whose spectral properties differ from the average ones. These properties and their changes with time may characterize the relaxation process/1,24,33,98)... [Pg.91]

Results of MNDO calculation of lA-azonine (35 X=NH) are in agreement with experimental evidence that this is a planar, aromatic molecule. The calculated geometry of oxonin (35 X = 0), as a buckled, unsymmetrical polyenic heterocycle, is also in agreement with its known properties. The MNDO calculations on thionin (35 X = S) indicate that this molecule is planar, which should allow effective tt delocalization, and at least some aromatic character (86MI927-OI). The topological resonance energy model also predicts lA-azonine and thionin to be aromatic, and oxonin nonaromatic (84JHC273). [Pg.159]

For the purposes of this review it is convenient to focus attention on that class of molecules in which the valence electrons are easily distinguished from the core electrons (e.g., -n electron systems) and which have a large number of vibrational degrees of freedom. There have been several studies of the photoionization of aromatic molecules.206-209 In the earliest calculations either a free electron model, or a molecule-centered expansion in plane waves, or coulomb functions, has been used. Only the recent calculation by Johnson and Rice210 explicitly considered the interference effects which must accompany any process in a system with interatomic spacings and electron wavelength of comparable magnitude. The importance of atomic interference effects in the representation of molecular continuum states has been emphasized by Cohen and Fano,211 but, as far as we know, only the Johnson-Rice calculation incorporates this phenomenon in a detailed analysis. [Pg.287]

In a 7r electron system the orbitals of an aromatic positive ion are similar to the corresponding orbitals of the neutral molecule. In contrast, in small molecules electronic rearrangement following excitation is often sufficiently important that changes in nuclear geometry, correlation energy, etc., are all essential to the correct interpretation of the excitation phenomenon. Because of the similarity in the orbital systems of neutral and positive ion aromatic compounds, we shall assume that it is possible to describe the photoionization of an aromatic molecule within the framework of a one-electron model. Given that the n and a electrons are describ-able by a set of separable equations of motion, we need consider only the initial and final orbitals of the most weakly bound electron to determine the ionization cross section near to the threshold of ionization. [Pg.287]

An alternative approach to the experimental estimation of REs utilizes equilibrium (protonation) data rather than thermochemical data, the idea being that comparisons of the basicities of pyrrole and its benzo fused analogues with those of non-aromatic systems which form cations of 7r-electron structure similar to the aromatic compounds should furnish a measure of the loss of RE accompanying protonation of the aromatic system (76T1767, 72CI(L)335). Thus, for the a-protonation of N-methylpyrrole, the model non-aromatic system was chosen as (20). Combination of pKa values for the protonation of the aromatic and non-aromatic molecules, taking into account the intrinsic resonance stabilization of the... [Pg.191]

Modified Notation.—The Platt notation is applied mainly to aromatic molecules and based on the conceptually simple perimeter model description of electronic excitations (7). Ground states are labeled A, the excited states involved in certain very high intensity transitions are labeled B and the excited states produced in partially forbidden transitions (i.e., those in which selection rules are violated) are labeled L and C. The notation is derived from selection rules appropriate for imaginary monocyclic aromatic systems. States to which transitions are forbidden because of a large change in angular momentum are L states. Transitions to C states are parity forbidden that is, they violate the g g, u u selection rule. In common aromatics other than benzene these selection rules break down and transitions to L and C states occur but at lower intensities relative to B states. [Pg.8]

In contrast to aromatic molecules which have An + 2 n electrons, cyclobutadiene and cyclooctatetraene do not have An + 2 7r electrons and are not aromatic. In fact, diese molecules, which contain An jt electrons (n is an integer), are less stable than die planar model compounds and are termed antiaromatic. Bodi of these molecules adopt shapes that minimize interactions of die n orbitals. [Pg.24]

Application to the kinds of structures dealt with in this article is, however, limited by the very large number of parameters involved. It is generally necessary to set up a model and test it by calculation of the expected diffraction pattern. At first sight this would appear to be an almost impossible task for complex aromatic molecules, but many important results have already been achieved. Bastiansen and Hassel... [Pg.222]

The A/A values have been found to correlate extremely well with aromatic molecules van der Waals volumes, suggesting that the liquid cavity model in which the aromatic is a space filler is an accurate one. The constancy of the A/A value suggests that the cation-anion association produces fairly well-defined solution voids with a volume that is invariant with change of solvent. [Pg.887]

A simple, consistent and highly-visual model emerges for the behavior of correlated Jt electrons in all of the aromatic systems that we have studied. The special stability of such molecules arises from the mode of coupling of the electron spins, as shown by the magnitudes of the resonance energies, and not from any supposed delocalization of the orbitals. We have thus developed a theoretical framework on which to build a coherent picture of the structure and properties of aromatic molecules. [Pg.55]

We will take a semiempirical approach using numerous molecules, models, assumptions, and estimates rather than doing new calorimetric experiments and/or quantum chemical calculations. Indeed, we will also test what is probably the simplest assumption - that (4n + 2) n electrons found within a conjugated ring species is expected to result in enhanced stability and that this compound is called aromatic. We will consider the dihydroindene (indane) skeleton composed of a benzene ring fused to a nonaromatic five-membered ring that lacks additional double bonds, and will use this carbocyclic hydrocarbon with X = Y = Z = CH2 as a paradigm for many heterocyclic derivatives for which the possible aromaticity is of relevance to the current chapter. Similarly we use indene with -X-Y- = -CH=CH-, Z = CH2 for a variety of unsaturated heterocycles of interest here. [Pg.1]

Excited-state intramolecular proton transfer (ESIPT) processes are important for both practical and fundamental reasons. o-Hydroxybenzaldehyde (OHBA) is the simplest aromatic molecule displaying ESIPT and serves as a model system for comparison with theory. TRPES was used to study ESIPT in OHBA, monodeuterated ODBA and an analogous two-ring system hydroxyacetonaph-tone (HAN) as a function of pump laser wavelength, tuning over the entire enol... [Pg.550]

Amyloid Fibers in Disease Several small aromatic molecules, such as phenol red (used as a nontoxic drug model), have been shown to inhibit the formation of amyloid in laboratory model systems. A goal of the research on these small aromatic compounds is to find a drug that would efficiently inhibit the formation of amyloid in the brain in people with incipient Alzheimer s disease. [Pg.49]

The sequence of events in coke formation was studies in the model reaction [70] of H-Y zeolite with propene at 723 K. Under these drastic conditions the soluble white coke formed rapidly within 20 min and was converted into insoluble coke within 6h under inert gas without loosing carbon atoms in the deposit. Due to the larger pores in the Y-zcolites compared to the ZSM type zeolites used in the other studies mentioned so far, the structure of the aromatic molecules is somewhat different. The soluble coke in this system consisted of alkyl cyclopentapyrenes (C H2 -26. Type A) as the hydrogen-rich primary product and of alkyl benzoperylenes (C H2n- 2. Type B) and alkyl coro-nenes (CrtH2 -36. Type C) as matured components. The temporal evolution of the various products is presented in Fig. 14. It clearly emerges that the soluble coke fractions are precursors for the insoluble coke and that within the soluble coke fraction the final steps of dehydrogenation-polymerization are very slow compared to the initial formation of smaller aromatic molecules from propene. The sequential formation of precursors with decreasing C H ratio follows from the shift of the maximum in the abundance of each fraction on the time axis. [Pg.116]


See other pages where Molecules, model aromatic is mentioned: [Pg.347]    [Pg.511]    [Pg.402]    [Pg.106]    [Pg.186]    [Pg.124]    [Pg.42]    [Pg.423]    [Pg.57]    [Pg.13]    [Pg.128]    [Pg.319]    [Pg.271]    [Pg.102]    [Pg.470]    [Pg.210]    [Pg.44]    [Pg.283]    [Pg.382]    [Pg.296]    [Pg.23]    [Pg.92]    [Pg.35]    [Pg.339]    [Pg.554]    [Pg.6]    [Pg.317]    [Pg.139]    [Pg.112]    [Pg.112]   
See also in sourсe #XX -- [ Pg.238 ]




SEARCH



Aromatic molecules

Free-electron model aromatic molecules

Molecules modeling

© 2024 chempedia.info