Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Arachidonic acid, prostaglandin synthesis

Aprotic chiral ligands, metal alkyls, 255 Aqueous surfactants, 340 Arachidonic acid, prostaglandin synthesis, 298... [Pg.192]

Topical corticosteroids (Table 16-1) may halt synthesis and mitosis of DNA in epidermal cells and appear to inhibit phospholipase A, lowering the amounts of arachidonic acid, prostaglandins, and leukotrienes in the skin. These effects, coupled with local vasoconstriction, reduce erythema, pruritus, and scaling. As antipsoriatic agents, they are best used adjunc-tively with a product that specifically functions to normalize epidermal hyperproliferation. [Pg.201]

Mammals can add additional double bonds to unsaturated fatty acids in their diets. Their ability to make arachidonic acid from linoleic acid is one example (Figure 25.15). This fatty acid is the precursor for prostaglandins and other biologically active derivatives such as leukotrienes. Synthesis involves formation of a linoleoyl ester of CoA from dietary linoleic acid, followed by introduction of a double bond at the 6-position. The triply unsaturated product is then elongated (by malonyl-CoA with a decarboxylation step) to yield a 20-carbon fatty acid with double bonds at the 8-, 11-, and 14-positions. A second desaturation reaction at the 5-position followed by an acyl-CoA synthetase reaction (Chapter 24) liberates the product, a 20-carbon fatty acid with double bonds at the 5-, 8-, IT, and ITpositions. [Pg.816]

Animal cells can modify arachidonic acid and other polyunsaturated fatty acids, in processes often involving cyclization and oxygenation, to produce so-called local hormones that (1) exert their effects at very low concentrations and (2) usually act near their sites of synthesis. These substances include the prostaglandins (PG) (Figure 25.27) as well as thromboxanes (Tx), leukotrienes, and other hydroxyeicosanoic acids. Thromboxanes, discovered in blood platelets (thrombocytes), are cyclic ethers (TxBg is actually a hemiacetal see Figure 25.27) with a hydroxyl group at C-15. [Pg.829]

In this bromoaspirin-inactivated structure, Ser , which lies along the wall of the tunnel, is bromoacetylated, and a molecule of salicylate is also bound in the tunnel. Deep in the tunnel, at the far end, lies Tyr, a catalytically important residue. Heme-dependent peroxidase activity is implicated in the formation of a proposed Tyr radical, which is required for cyclooxygenase activity. Aspirin and other NSAIDs block the synthesis of prostaglandins by filling and blocking the tunnel, preventing the migration of arachidonic acid to Tyr in the active site at the back of the tunnel. [Pg.835]

Calderwood, S.K., Bomstein, B., Famum, E.K.., Stevenson, M.A. (1989). Heat shock stimulates the release of arachidonic acid and the synthesis of prostaglandins and leukotriene B4 in mammalian cells. J. Cell. Physiol. 141, 325-333. [Pg.452]

As the first isolable intermediate in the bioconversion of arachidonic acid into prostaglandins and thromboxanes (Eq. 3), PGG2 is a bicyclic peroxide of immense biological importance. It is difficult to obtain pure from natural sources and the presence of the 15-hydroperoxide group adds a further dimension of chemical lability to that associated with the 9,11-peroxide bridge. The chemical synthesis of PGG2 is thus a landmark in prostaglandin chemistry. It also represents a pinnacle of success for the silver-salt route to bicyclic peroxides. [Pg.144]

Prostaglandins are a subgroup of a larger family of compounds known collectively as eicosanoids, which are synthesized from arachidonic acid (arachidonate) this is a 20-carbon omega-6 unsaturated fatty acid (C20 4). The source of the arachidonic acid for PG synthesis is the cell membrane. Most membrane phospholipids have an unsaturated fatty acid as arachidonate at carbon 2 on the glycerol backbone to help maintain membrane fluidity. The arachidonic acid released from the membrane by the... [Pg.132]

Arachidonic acid (C20 4 n-6) is the precursor for the synthesis of prostaglandin molecules (Section 4.4.4), which have a wide range of biochemical effects on for example, the perception of pain, inflammation, blood clotting and smooth muscle contraction. Docosahexaenoic acid (DHA, C22 6) and eicosapentaenoic acid (EPA, C20 5) are both n-3 long-chain polyunsaturated fatty acids (PUFA) which have been shown to have significantly beneficial effects on intellectual development and inflammatory conditions such as asthma and cardiovascular disease. [Pg.186]

Eicosanoid synthesis. Arachidonic acid is converted by cyclooxygenases into prostaglandins, and thromboxanes. Lipoxygenases convert arachidonic acid into HPETEs, which are then converted to lipoxins, leukotrienes, and 12-HETE (hydroxyeicosatetraenoic acid). Epoxygenases convert arachidonic acid into epoxides. [Pg.279]

The cells in the hypothalamus that control body temperature respond to the cytokines by stimulating the activity of the membrane bound phospholipase, which results in the formation of arachidonic acid, the substrate for the enzyme cyclooxygenase-2 (COX-2) which is the rate-limiting step in the pathway for synthesis of prostaglandins. Prostaglandins influence cells in the hypothalamus that are responsible for temperature regulation. [Pg.425]

Glucocorticosteroids are the most potent antiinflammatory agents available. They stabilize lysosomal membranes and reduce the concentration of proteolytic enzymes at the site of inflammation. They promote the synthesis of proteins called lipocortins which inhibit phospholipase-A2 and thus inhibit production of arachidonic acid, leukotrienes and prostaglandins. Furthermore, the expression of COX-II and through that the inflammatory effects of the licosanoids is inhibited. Glucocorticosteroids reduce the release of histamine from basophils, decrease capillary permeability and cause vasoconstriction. Glucocorticosteroids stimulate the loss of calcium with the urine and inhibit the resorption of calcium from the gut. [Pg.390]

Another important aspect of the inflammatory cascade is arachidonic acid metabolism, leading to the synthesis of the proinflammatory prostaglandins and leukotrienes. Through the formation of Upocortin, an inhibitor of phospholipase A2, glucocorticoids depress the release of arachidonic acid from phospholipids and hence the production of arachidonic acid metabolites. [Pg.690]

Metabolites of arachidonic acid, including prostaglandins (PG), thromboxanes, and leukotrienes, are considered strong candidates as mediators of the inflammatory process. Steroids may exert a primary effect at the inflammatory site by inducing the synthesis of a group of proteins called lipocortins. These proteins suppress the activation of phospholipase A2, thereby decreasing the release of arachidonic acid and the production of proinflammatory eicosanoids (Fig. 60.6). [Pg.698]

Kinsella. Olive oil enriched diets decreases arachidonic acid without affecting prostaglandin synthesis in mouse lung and spleen. Nutr Res 1988 8(5) 499-507. [Pg.397]


See other pages where Arachidonic acid, prostaglandin synthesis is mentioned: [Pg.98]    [Pg.385]    [Pg.388]    [Pg.151]    [Pg.152]    [Pg.134]    [Pg.272]    [Pg.139]    [Pg.14]    [Pg.261]    [Pg.361]    [Pg.203]    [Pg.255]    [Pg.398]    [Pg.578]    [Pg.920]    [Pg.294]    [Pg.412]    [Pg.545]    [Pg.230]    [Pg.319]    [Pg.229]    [Pg.249]    [Pg.244]    [Pg.246]    [Pg.53]    [Pg.23]    [Pg.190]    [Pg.214]    [Pg.313]    [Pg.539]    [Pg.29]    [Pg.194]   
See also in sourсe #XX -- [ Pg.298 ]




SEARCH



Acids arachidonic acid

Arachidonate

Arachidonic acid

Arachidonic acid prostaglandin synthesis from

Arachidonic acid, prostaglandin

Arachidonic acid/arachidonate

Prostaglandines, synthesis

© 2024 chempedia.info