Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aqueous behaviour

Fisher, S.W. and T.W. Lohner. 1987. Changes in the aqueous behaviour of parathion under varying conditions of pH. Arch. Environ. Contam. Toxicol. 16 79-84. [Pg.768]

The Debye-Htickel limiting law predicts a square-root dependence on the ionic strength/= MTLcz of the logarithm of the mean activity coefficient (log y ), tire heat of dilution (E /VI) and the excess volume it is considered to be an exact expression for the behaviour of an electrolyte at infinite dilution. Some experimental results for the activity coefficients and heats of dilution are shown in figure A2.3.11 for aqueous solutions of NaCl and ZnSO at 25°C the results are typical of the observations for 1-1 (e.g.NaCl) and 2-2 (e.g. ZnSO ) aqueous electrolyte solutions at this temperature. [Pg.488]

The gas phase reaction shows a double minimum and a small barrier along the reaction coordinate which is the difference between the two C-CL distances. The minima disappear in aqueous solution and this is accompanied by an increase in the height of the barrier. The behaviour in dimethyl fonnamide is intennediate between these two. [Pg.517]

One anomaly inmrediately obvious from table A2.4.2 is the much higher mobilities of the proton and hydroxide ions than expected from even the most approximate estimates of their ionic radii. The origin of this behaviour lies in the way hr which these ions can be acconmrodated into the water structure described above. Free protons cannot exist as such in aqueous solution the very small radius of the proton would lead to an enomrous electric field that would polarize any molecule, and in an aqueous solution the proton inmrediately... [Pg.574]

It shows some amphoteric behaviour, since it dissolves in alkali (concentrated aqueous or fused) to give a ferrate(lll) the equation may be written as... [Pg.394]

Breslow studied the dimerisation of cyclopentadiene and the reaction between substituted maleimides and 9-(hydroxymethyl)anthracene in alcohol-water mixtures. He successfully correlated the rate constant with the solubility of the starting materials for each Diels-Alder reaction. From these relations he estimated the change in solvent accessible surface between initial state and activated complex " . Again, Breslow completely neglects hydrogen bonding interactions, but since he only studied alcohol-water mixtures, the enforced hydrophobic interactions will dominate the behaviour. Recently, also Diels-Alder reactions in dilute salt solutions in aqueous ethanol have been studied and minor rate increases have been observed Lubineau has demonstrated that addition of sugars can induce an extra acceleration of the aqueous Diels-Alder reaction . Also the effect of surfactants on Diels-Alder reactions has been studied. This topic will be extensively reviewed in Chapter 4. [Pg.26]

The unexpected preference for the interfacial region at lower concentrations of benzene has prompted speculation. It has been demonstrated that aromatic compounds are capable of forming weak hydrogen bonds with water. This ability favours uptake in the aqueous interface over solubilisation in the interior. Alternatively, some authors have attributed the binding behaviour of benzene to its... [Pg.128]

The state of aqueous solutions of nitric acid In strongly acidic solutions water is a weaker base than its behaviour in dilute solutions would predict, for it is almost unprotonated in concentrated nitric acid, and only partially protonated in concentrated sulphuric acid. The addition of water to nitric acid affects the equilibrium leading to the formation of the nitronium and nitrate ions ( 2.2.1). The intensity of the peak in the Raman spectrum associated with the nitronium ion decreases with the progressive addition of water, and the peak is absent from the spectrum of solutions containing more than about 5% of water a similar effect has been observed in the infra-red spectrum. ... [Pg.7]

Investigations of the solubilities of aromatic compounds in concentrated and aqueous sulphuric acids showed the activity coefficients of nitrocompounds to behave unusually when the nitro-compound was dissolved in acid much more dilute than required to effect protonation. This behaviour is thought to arise from changes in the hydrogenbonding of the nitro group with the solvent. [Pg.18]

There are certain limitations to the usefulness of nitration in aqueous sulphuric acid. Because of the behaviour of the rate profile for benzene, comparisons should strictly be made below 68% sulphuric acid ( 2.5 fig. 2.5) rates relative to benzene vary in the range 68-80% sulphuric acid, and at the higher end of this range are not entirely measures of relative reactivity. For deactivated compounds this limitation is not very important, but for activated compounds it is linked with a fundamental limit to the significance of the concept of aromatic reactivity as already discussed ( 2.5), nitration in sulphuric acid cannot differentiate amongst compounds not less than about 38 times more reactive than benzene. At this point differentiation disappears because reactions occur at the encounter rate. [Pg.124]

The acid-base behaviour of aqueous solutions has already been discussed (p. 48). The ionic self-dissociation of water is well established (Table 14.8) and can be formally represented as... [Pg.628]

The chemistry of hafnium has not received the same attention as that of titanium or zirconium, but it is clear that its behaviour follows that of zirconium very closely indeed with only minor differences in such properties as solubility and volatility being apparent in most of their compounds. The most important oxidation state in the chemistry of these elements is the group oxidation state of +4. This is too high to be ionic, but zirconium and hafnium, being larger, have oxides which are more basic than that of titanium and give rise to a more extensive and less-hydrolysed aqueous chemistry. In this oxidation state, particularly in the case of the dioxide and tetrachloride, titanium shows many similarities with tin which is of much the same size. A large... [Pg.958]

The distinction between the first member of the group and the two heavier members, which was seen to be so sharp in the early groups of transition metals, is much less obvious here. The only unsubstituted, discrete oxoanions of the heavier pair of metals are the tetrahedral [Ru 04] and [Ru 04]. This behaviour is akin to that of iron or, even more, to that of manganese, whereas in the osmium analogues the metal always increases its coordination number by the attachment of extra OH ions. If RUO4 is dissolved in cold dilute KOH, or aqueous K2RUO4 is oxidized by chlorine, virtually black crystals of K[Ru 04] ( permthenate ) are deposited. These are unstable unless dried and are reduced by water, especially if alkaline, to the orange... [Pg.1082]

Because of possible catalytic and biological relevance of metal-sulfur clusters, several such compounds of cobalt have been prepared. The action of H2S or M2S (M = alkali metal) on a non-aqueous solution of a convenient cobalt compound (often containing, or in the presence of, a phosphine) is a typical route. Diamagnetic [Co6Ss(PR3)6] (R = Et, Ph) comprise an octahedral array of metal atoms (Co-Co in the range 281.7 to 289.4pm), all faces capped by atoms,and show facile redox behaviour... [Pg.1119]

Aqueous environments will range from very thin condensed films of moisture to bulk solutions, and will include natural environments such as the atmosphere, natural waters, soils, body fluids, etc. as well as chemicals and food products. However, since environments are dealt with fully in Chapter 2, this discussion will be confined to simple chemical solutions, whose behaviour can be more readily interpreted in terms of fundamental physicochemical principles, and additional factors will have to be considered in interpreting the behaviour of metals in more complex environments. For example, iron will corrode rapidly in oxygenated water, but only very slowly when oxygen is absent however, in an anaerobic water containing sulphate-reducing bacteria, rapid corrosion occurs, and the mechanism of the process clearly involves the specific action of the bacteria see Section 2.6). [Pg.55]

Gatty, O. and Spooner, E. C., Electrode Potential Behaviour of Corroding Metals in Aqueous Solutions, Oxford University Press, London (1938)... [Pg.241]


See other pages where Aqueous behaviour is mentioned: [Pg.125]    [Pg.432]    [Pg.378]    [Pg.183]    [Pg.173]    [Pg.733]    [Pg.91]    [Pg.12]    [Pg.181]    [Pg.125]    [Pg.432]    [Pg.378]    [Pg.183]    [Pg.173]    [Pg.733]    [Pg.91]    [Pg.12]    [Pg.181]    [Pg.489]    [Pg.2670]    [Pg.10]    [Pg.889]    [Pg.1050]    [Pg.1093]    [Pg.43]    [Pg.139]    [Pg.153]    [Pg.162]    [Pg.265]    [Pg.267]    [Pg.276]    [Pg.314]    [Pg.36]    [Pg.815]    [Pg.948]    [Pg.1056]    [Pg.1191]    [Pg.1265]    [Pg.1282]    [Pg.511]    [Pg.345]    [Pg.25]    [Pg.211]   
See also in sourсe #XX -- [ Pg.12 ]




SEARCH



Acid-base behaviour, in non-aqueous solvents

Factors Influencing Acidic and Basic Behaviour in Aqueous Solutions

© 2024 chempedia.info