Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Approximate Hartree-Fock methods

MINDO is a much more powerful theory when properly parametrized, giving generally better predictions of structures and energies than minimum-basis-set Hartree-Fock calculations. We shall later describe applications of MINDO and similar approaches to borates (Uchida et al., 1985) and to defects in Si02 (Edwards and Fowler, 1985). However, some of the claims made for this semiempirical approach have been strongly criticized (e.g., Pople, 1975). [Pg.114]


The starting point of the creation of the theory of the many-electron atom was the idea of Niels Bohr [1] to consider each electron of an atom as orbiting in a stationary state in the field, created by the charge of the nucleus and the rest of the electrons of an atom. This idea is several years older than quantum mechanics itself. It allows one to construct an approximate wave function of the whole atom with the help of one-electron wave functions. They may be found by accounting for the approximate states of the passive electrons, in other words, the states of all electrons must be consistent. This is the essence of the self-consistent field approximation (Hartree-Fock method), widely used in the theory of many-body systems, particularly of many-electron atoms and ions. There are many methods of accounting more or less accurately for this consistency, usually named by correlation effects, and of obtaining more accurate theoretical data on atomic structure. [Pg.446]

The first data listed are those calculated by an approximate Hartree-Fock method. According to Noack, these data are systematically overevaluated only the differences from one carbonyl compound to another must be considered. The values in parentheses are those calculated by taking Hehre and Lathan s value for acetaldehyde as a reference... [Pg.45]

In the section that follows this introduction, the fundamentals of the quantum mechanics of molecules are presented first that is, the localized side of Fig. 1.1 is examined, basing the discussion on that of Levine (1983), a standard quantum-chemistry text. Details of the calculation of molecular wave functions using the standard Hartree-Fock methods are then discussed, drawing upon Schaefer (1972), Szabo and Ostlund (1989), and Hehre et al. (1986), particularly in the discussion of the agreement between calculated versus experimental properties as a function of the size of the expansion basis set. Improvements on the Hartree-Fock wave function using configuration-interaction (Cl) or many-body perturbation theory (MBPT), evaluation of properties from Hartree-Fock wave functions, and approximate Hartree-Fock methods are then discussed. [Pg.94]

Of course, the Kohn-Sham paper was much more than a mere rediscovery of an approximate Hartree-Fock method. It is soundly based on density functional theory and has paved the way for the approximate treatment of correlation effects, for example, through the use of the LSD approximation in conjunction with correlated electron-gas calculations. [Pg.454]

One-determinant approximation One-electron approximation One-particle approximation Molecular orbital method Independent-particle approximation Mean field approximation Hartree-Fock method... [Pg.391]

A highly readable account of early efforts to apply the independent-particle approximation to problems of organic chemistry. Although more accurate computational methods have since been developed for treating all of the problems discussed in the text, its discussion of approximate Hartree-Fock (semiempirical) methods and their accuracy is still useful. Moreover, the view supplied about what was understood and what was not understood in physical organic chemistry three decades ago is... [Pg.52]

While the equations of the Hartree-Fock approach can he rigorously derived, we present them post hoc and give a physical description of the approximations leading to them. The Hartree-Fock method introduces an effective one-electron Hamiltonian. as in equation (47) on page 194 ... [Pg.224]

The application of density functional theory to isolated, organic molecules is still in relative infancy compared with the use of Hartree-Fock methods. There continues to be a steady stream of publications designed to assess the performance of the various approaches to DFT. As we have discussed there is a plethora of ways in which density functional theory can be implemented with different functional forms for the basis set (Gaussians, Slater type orbitals, or numerical), different expressions for the exchange and correlation contributions within the local density approximation, different expressions for the gradient corrections and different ways to solve the Kohn-Sham equations to achieve self-consistency. This contrasts with the situation for Hartree-Fock calculations, wlrich mostly use one of a series of tried and tested Gaussian basis sets and where there is a substantial body of literature to help choose the most appropriate method for incorporating post-Hartree-Fock methods, should that be desired. [Pg.157]

Computed using Hartree-Fock methods and Including an approximate relativistic correction (24). [Pg.188]

As was the case with lanthanide crystal spectra (25), we found that a systematic analysis could be developed by examining differences, AP, between experimentally-established actinide parameter values and those computed using Hartree-Fock methods with the inclusion of relativistic corrections (24), as illustrated in Table IV for An3+. Crystal-field effects were approximated based on selected published results. By forming tabulations similar to Table IV for 2+, 4+, 5+ and 6+ spectra, to the extent that any experimental data were available to test the predictions, we found that the AP-values for Pu3+ provided a good starting point for approximating the structure of plutonium spectra in other valence states. However,... [Pg.189]

In the unrestricted Hartree-Fock method, a single-determinant wave function is used with different molecular orbitals for a and jS spins, and the eigenvalue problem is solved with separate F and F matrices. With the zero differential overlap approximation, the F matrix elements (25) become... [Pg.337]

In order to find a good approximate wave function, one uses the Hartree-Fock procedure. Indeed, the main reason the Schrodinger equation is not solvable analytically is the presence of interelectronic repulsion of the form e2/r. — r.. In the absence of this term, the equation for an atom with n electrons could be separated into n hydrogen-like equations. The Hartree-Fock method, also called the Self-Consistent-Field method, regards all electrons except one (called, for instance, electron 1), as forming a cloud of electric charge... [Pg.4]

When the Hartree-Fock method is applied to molecules, molecular orbitals are used instead of atomic orbitals. To construct the molecular orbitals, one widely used approximation is LCAO (linear combinations of atomic orbitals). According to molecular orbital theory, the total wave function of the system is written as a combination of molecular orbitals, spin functions describing electrons in terms of spin j(a) or — j p). [Pg.5]

In most work reported so far, the solute is treated by the Hartree-Fock method (i.e., Ho is expressed as a Fock operator), in which each electron moves in the self-consistent field (SCF) of the others. The term SCRF, which should refer to the treatment of the reaction field, is used by some workers to refer to a combination of the SCRF nonlinear Schrodinger equation (34) and SCF method to solve it, but in the future, as correlated treatments of the solute becomes more common, it will be necessary to more clearly distinguish the SCRF and SCF approximations. The SCRF method, with or without the additional SCF approximation, was first proposed by Rinaldi and Rivail [87, 88], Yomosa [89, 90], and Tapia and Goscinski [91], A highly recommended review of the foundations of the field was given by Tapia [71],... [Pg.11]

In the quantitative development of the structure in the self-consistent field approximation (S.C.F.) using the Hartree-Fock method the energy Ei is made up of three terms, one for the mean kinetic energy of the electron in one for its mean potential energy in the field of the nuclei, and a... [Pg.33]

The Xa multiple scattering method generates approximate singledeterminant wavefunctions, in which the non-local exchange interaction of the Hartree-Fock method has been replaced by a local term, as in the Thomas-Fermi-Dirac model. The orbitals are solutions of the one-electron differential equation (in atomic units)... [Pg.60]

The various methods used in quantum chemistry make it possible to compute equilibrium intermolecular distances, to describe intermolecular forces and chemical reactions too. The usual way to calculate these properties is based on the independent particle model this is the Hartree-Fock method. The expansion of one-electron wave-functions (molecular orbitals) in practice requires technical work on computers. It was believed for years and years that ab initio computations will become a routine task even for large molecules. In spite of the enormous increase and development in computer technique, however, this expectation has not been fulfilled. The treatment of large, extended molecular systems still needs special theoretical background. In other words, some approximations should be used in the methods which describe the properties of molecules of large size and/or interacting systems. The further approximations are to be chosen carefully this caution is especially important when going beyond the HF level. The inclusion of the electron correlation in the calculations in a convenient way is still one of the most significant tasks of quantum chemistry. [Pg.41]

The description above may seem a little unhelpful since we know that in any interesting system the electrons interact with one another. The many different wave-function-based approaches to solving the Schrodinger equation differ in how these interactions are approximated. To understand the types of approximations that can be used, it is worth looking at the simplest approach, the Hartree-Fock method, in some detail. There are also many similarities between Hartree-Fock calculations and the DFT calculations we have described in the previous sections, so understanding this method is a useful way to view these ideas from a slightly different perspective. [Pg.21]


See other pages where Approximate Hartree-Fock methods is mentioned: [Pg.10]    [Pg.12]    [Pg.113]    [Pg.8]    [Pg.10]    [Pg.12]    [Pg.113]    [Pg.8]    [Pg.4]    [Pg.32]    [Pg.34]    [Pg.37]    [Pg.29]    [Pg.313]    [Pg.188]    [Pg.190]    [Pg.7]    [Pg.58]    [Pg.80]    [Pg.81]    [Pg.690]    [Pg.704]    [Pg.5]    [Pg.103]    [Pg.710]    [Pg.139]    [Pg.288]    [Pg.50]    [Pg.122]   


SEARCH



Approximation methods

Hartree approximation

Hartree-Fock approximation

Hartree-Fock approximation multiconfiguration method

Hartree-Fock method

Hartree-Fock method Born-Oppenheimer approximation

Hartree-Fock method approximations

© 2024 chempedia.info