Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Antioxidants hindered radicals

A hindered phenol is one of the most common antioxidants used in urethanes. This antioxidant traps radicals, which can degrade the polymer chain. The proposed mechanism is as follows [87] ... [Pg.805]

An antioxidant ties up the peroxy radicals so that they are incapable of propagating the reaction chain or to decompose the hydroperoxides in such a manner that carbonyl groups and additional free radicals are not formed. The former, which are called chain-breaking antioxidants, free-radical scavengers, or inhibitors. are usually hindered phenols or amines. The latter, called peroxide decomposers, are generally sulfur compounds or... [Pg.139]

H-donors, e.g. phenolic antioxidants, hinder the reaction between alkoxy radicals and the polymer backbone. Radical scavengers react mainly with... [Pg.120]

Inhibition of chain processes is achieved by the addition of free radical scavengers, which react by chain transfer more rapidly than the propagation step. The product of chain transfer is also a free radical, but the key to the transfer agent being a good inhibitor is that it must be a very unreactive radical, e.g., sterically hindered radicals formed from the widely used antioxidants BHT (2,6-di-t-butyl-hydroxy-toluene) and BHA (2,6-di-t-butyl-hydroxy-anisole). [Pg.23]

The very reactive radicals R are blocked by being transformed into a neutral molecule (RH) and a radical of very low reactivity stabilised by conjugation. In that way the chain reactions are interrupted. Both antioxidants (hindered phenols and diphenylamines) are consumed after hydrogen radical donation (sacrificial antioxidants) [140]. [Pg.145]

Hindered amines are effective in preventing UV degradation. They are generally thought of as light stabilizers rather than as antioxidants. Hindered amines work by trapping both alkyl and peroxy radicals. [Pg.536]

Primary antioxidants, usually sterically hindered phenols, function by donating their reactive hydrogen to the peroxy free radical so that the propagation of subsequent free radicals does not occur. The antioxidant free radical is rendered stable by electron delocalization. Secondary antioxidants retard oxidation by preventing the proliferation of alkoxy and hydroxy radicals by decomposing hydroperoxides to yield nonreactive products. These materials are typically used in synergistic combination with primary antioxidants. [Pg.247]

An effective method of thermal stabilization is through the use of a radical terminating primary antioxidant. The most common class of antioxidant for radical termination is a hindered phenol (4). Phenolic antioxidants are highly effective at relatively low concentrations (i.e., <0.5 wt%) in inhibiting decomposition. The mechanism involves a chain-breaking donation of a hydrogen atom from the antioxidant to the reactive peroxy-radical (Fig. 4.3). This produces a less-reactive... [Pg.82]

Among the abundance of tested classes of substances, PCA is the only additive reliably protecting PSF from oxidation in concentrations below 0.3 wt.%. As expected, by analogy with polycarbonate and other heterochain polymers processed at temperatures about 300°C, classical primary antioxidants (hindered phenols and aromatic amines) are at most neutral (amines catastrophically color PSF), which proved existence of the effective inhibition temperature limit (120 - 125°C) [11, p. 218]. It is stipulated by activity of phenoxyl radicals in reactions with hydroperoxides. Commonly, all so-called non-chain inhibitors intensify... [Pg.131]

Antioxidants markedly retard the rate of autoxidation throughout the useful life of the polymer. Chain-terminating antioxidants have a reactive —NH or —OH functional group and include compounds such as secondary aryl amines or hindered phenols. They function by transfer of hydrogen to free radicals, principally to peroxy radicals. Butylated hydroxytoluene is a widely used example. [Pg.1008]

Oxidation of LLDPE starts at temperatures above 150°C. This reaction produces hydroxyl and carboxyl groups in polymer molecules as well as low molecular weight compounds such as water, aldehydes, ketones, and alcohols. Oxidation reactions can occur during LLDPE pelletization and processing to protect molten resins from oxygen attack during these operations, antioxidants (radical inhibitors) must be used. These antioxidants (qv) are added to LLDPE resins in concentrations of 0.1—0.5 wt %, and maybe naphthyl amines or phenylenediamines, substituted phenols, quinones, and alkyl phosphites (4), although inhibitors based on hindered phenols are preferred. [Pg.395]

Radical Scavengers Hydrogen-donating antioxidants (AH), such as hindered phenols and secondary aromatic amines, inhibit oxidation by competing with the organic substrate (RH) for peroxy radicals. This shortens the kinetic chain length of the propagation reactions. [Pg.223]

The effect substitution on the phenolic ring has on activity has been the subject of several studies (11—13). Hindering the phenolic hydroxyl group with at least one bulky alkyl group ia the ortho position appears necessary for high antioxidant activity. Neatly all commercial antioxidants are hindered ia this manner. Steric hindrance decreases the ability of a phenoxyl radical to abstract a hydrogen atom from the substrate and thus produces an alkyl radical (14) capable of initiating oxidation (eq. 18). [Pg.224]

The exterior durabiHty of relatively stable coatings can be enhanced by use of additives. Ultraviolet absorbers reduce the absorption of uv by the resins and hence decrease the rate of photodegradation. Eurther improvements can be gained by also adding free-radical trap antioxidants (qv) such as hindered phenols and especially hindered amine light stabilizers (HALS). A discussion of various types of additives is available (113). [Pg.348]

Process 4, conversion of peroxy radicals to hydroperoxides can be interrupted by traditional primary antioxidants (see Fig. 16). The fastest reacting primary antioxidants are the aromatic amines (e.g. Naugard 445). However, these materials yellow upon exposure to UV light which restricts their applieations. More common in adhesives are the hindered phenol types of which numerous types are available, with Irganox 1010 the most common choice for adhesives. [Pg.730]

PD—S) to yield phosphates and alcohols, see Scheme 5 reaction a. Sterically hindered aryl phosphites (e.g., AO 14) have an additional chain breaking activity, i.e. they react with peroxyl and alkoxyl radicals during their function as antioxidants (reactions 5b and 5c) [18]. [Pg.109]

Another approach to safer stabilization is to use a biological antioxidant such as vitamin E (a-tocopherol is the active form of vitamin E, AO-9, Table la). It is essentially a hindered phenol which acts as an effective chain breaking donor antioxidant, donating a hydrogen to ROO to yield a very stable tocopheroxyl radical, a-Tocopherol is a very effective melt stabilizer in polyolefins that offers high protection to the polymer at very low concentration [41], (Table 2). [Pg.117]

Irg 1076, AO-3 (CB), are used in combination with metal dithiolates, e.g., NiDEC, AO-30 (PD), due to the sensitized photoxidation of dithiolates by the oxidation products of phenols, particularly stilbenequinones (SQ, see reaction 9C) (Table 3). Hindered piperidines exhibit a complex behavior when present in combination with other antioxidants and stabilizers they have to be oxidized initially to the corresponding nitroxyl radical before becoming effective. Consequently, both CB-D and PD antioxidants, which remove alkyl peroxyl radicals and hydroperoxides, respectively, antagonise the UV stabilizing action of this class of compounds (e.g.. Table 3, NiDEC 4- Tin 770). However, since the hindered piperidines themselves are neither melt- nor heat-stabilizers for polymers, they have to be used with conventional antioxidants and stabilizers. [Pg.117]

An alternative mechanism by which additives may protect polymers from photo-oxidation is radical trapping. Additives which operate by this mechanism are strictly light stabilizers rather than antioxidants. The most common materials in this class are the hindered amines, which are the usual additives for the protection of poly (ethylene) and poly (propylene). The action of these stabilisers is outlined in Reactions 8.3-8.5. [Pg.124]

The antirads, including numerous commercial antioxidants, having labile hydrogens in their stmc-mre intermpt the radical chain reactions, through transfer of the labile hydrogen and yield a highly stabilized radical from them, e.g., with a hindered phenol. [Pg.861]

The effect of antioxidants such as hindered phenohcs, secondary amine, and thioester on the radiation cross-linking efficiency of LDPE has been reported [260]. Amount of cross-linking at a given dose decreases with aU the antioxidants, the thioester being the most effective. IR absorption spectroscopy has been used to demonstrate dose-rate dependence of trani -vinylene unsaturation in irradiated Marlex 50 PE [261]. When the irradiated polymer is stored in vacuum a decrease is observed in trani-vinylene absorbance over a period of several weeks. After high dose-rate irradiation the decay is preceded by an initial increase. These phenomena have been ascribed to the reaction of trapped radicals. [Pg.876]


See other pages where Antioxidants hindered radicals is mentioned: [Pg.730]    [Pg.324]    [Pg.83]    [Pg.216]    [Pg.107]    [Pg.109]    [Pg.209]    [Pg.100]    [Pg.849]    [Pg.730]    [Pg.16]    [Pg.440]    [Pg.248]    [Pg.309]    [Pg.193]    [Pg.379]    [Pg.419]    [Pg.229]    [Pg.274]    [Pg.224]    [Pg.233]    [Pg.544]    [Pg.106]    [Pg.113]    [Pg.467]    [Pg.467]    [Pg.480]    [Pg.861]    [Pg.48]   
See also in sourсe #XX -- [ Pg.403 ]

See also in sourсe #XX -- [ Pg.288 ]




SEARCH



Hindered

Hindered radicals

© 2024 chempedia.info