Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anti-Stokes lasers

In a series of papers on various anti-Stokes laser media. White and Henderson [13] demonstrated such laser emission at 178 nm from I, at 149 nm from Br, and 410 nm from In. White [l4] also proposed that anti-Stokes lasers with emission from 100 to 206 nm could be produced based on metastable population inversions in the group VI elements 0, S, Se from selective photodissociation of N2O, OCS, and OCSe by VUV radiation. In recent experiments, Ludewigt et al. [15] have achieved anti-Stokes... [Pg.66]

Thermal properties for high 5.2.1. Anti-Stokes lasers in crystals 591... [Pg.508]

Anti-Stokes lasers in fluoride glass fibers... [Pg.591]

In fluoride glass fibers anti-Stokes lasers are favored for three reasons ... [Pg.591]

Fernandez, J., Mendioroz, A., Garcut, A.J., Baida, R., Adam, J.L., 2000. Anti-Stokes laser-induced internal cooling of Yb " -doped glasses. Phys. Rev. B 62 (5), 3213-3217. [Pg.254]

New metliods appear regularly. The principal challenges to the ingenuity of the spectroscopist are availability of appropriate radiation sources, absorption or distortion of the radiation by the windows and other components of the high-pressure cells, and small samples. Lasers and synchrotron radiation sources are especially valuable, and use of beryllium gaskets for diamond-anvil cells will open new applications. Impulse-stimulated Brillouin [75], coherent anti-Stokes Raman [76, 77], picosecond kinetics of shocked materials [78], visible circular and x-ray magnetic circular dicliroism [79, 80] and x-ray emission [72] are but a few recent spectroscopic developments in static and dynamic high-pressure research. [Pg.1961]

Figure B2.3.8. Energy-level sehemes deseribing various optieal methods for state-seleetively deteeting ehemieal reaetion produets left-hand side, laser-indueed fluoreseenee (LIF) eentre, resonanee-enlianeed multiphoton ionization (REMPI) and right-hand side, eoherent anti-Stokes Raman speetroseopy (CARS). The ionization oontinuiim is denoted by a shaded area. The dashed lines indieate virtual eleetronie states. Straight arrows indieate eoherent radiation, while a wavy arrow denotes spontaneous emission. Figure B2.3.8. Energy-level sehemes deseribing various optieal methods for state-seleetively deteeting ehemieal reaetion produets left-hand side, laser-indueed fluoreseenee (LIF) eentre, resonanee-enlianeed multiphoton ionization (REMPI) and right-hand side, eoherent anti-Stokes Raman speetroseopy (CARS). The ionization oontinuiim is denoted by a shaded area. The dashed lines indieate virtual eleetronie states. Straight arrows indieate eoherent radiation, while a wavy arrow denotes spontaneous emission.
Major breakthroughs in early ultrafast VER measurements were made in 1972 by Laubereau et al [22], who used picosecond lasers in an SRS pump-incoherent anti-Stokes Raman probe configuration, to study VER of C-H... [Pg.3034]

Por IR-Raman experiments, a mid-IR pump pulse from an OPA and a visible Raman probe pulse are used. The Raman probe is generated either by frequency doubling a solid-state laser which pumps the OPA [16], or by a two-colour OPA [39]. Transient anti-Stokes emission is detected with a monocliromator and photomultiplier [39], or a spectrograph and optical multichannel analyser [40]. [Pg.3039]

Hyper Raman scattering is at a wavenumber 2vq v r, where Vq is the wavenumber of the exciting radiation and —v r and +V[jr are the Stokes and anti-Stokes hyper Raman displacements, respectively. The hyper Raman scattering is well separated from the Raman scattering, which is centred on Vq, but is extremely weak, even with a 0-switched laser. [Pg.364]

The scattered radiation V3 is to high wavenumber of Vj (i.e. on the anti-Stokes side) and is coherent, unlike spontaneous Raman scattering hence the name CARS. As a consequence of the coherence of the scattering and the very high conversion efficiency to V3, the CARS radiation forms a collimated, laser-like beam. [Pg.367]

An interesting variation of Raman spectroscopy is coherent anti-Stokes Raman spectroscopy (CARS) (99). If two laser beams, with angular frequencies CO and CO2 are combined in a material, and if cjj — is close to a Raman active frequency of the material, then radiation at a new frequency CJ3 = 2cJ2 — may be produced. Detection of this radiation can be used to characterize the material. Often one input frequency is fixed and the other frequency, from a tunable laser, varied until matches the Raman frequency. CARS has the capabiHty for measurements in flames, plasmas, and... [Pg.17]

Hydrogen transfer in excited electronic states is being intensively studied with time-resolved spectroscopy. A typical scheme of electronic terms is shown in fig. 46. A vertical optical transition, induced by a picosecond laser pulse, populates the initial well of the excited Si state. The reverse optical transition, observed as the fluorescence band Fj, is accompanied by proton transfer to the second well with lower energy. This transfer is registered as the appearance of another fluorescence band, F2, with a large anti-Stokes shift. The rate constant is inferred from the time dependence of the relative intensities of these bands in dual fluorescence. The experimental data obtained by this method have been reviewed by Barbara et al. [1989]. We only quote the example of hydrogen transfer in the excited state of... [Pg.109]

The third common level is often invoked in simplified interpretations of the quantum mechanical theory. In this simplified interpretation, the Raman spectrum is seen as a photon absorption-photon emission process. A molecule in a lower level k absorbs a photon of incident radiation and undergoes a transition to the third common level r. The molecules in r return instantaneously to a lower level n emitting light of frequency differing from the laser frequency by —>< . This is the frequency for the Stokes process. The frequency for the anti-Stokes process would be + < . As the population of an upper level n is less than level k the intensity of the Stokes lines would be expected to be greater than the intensity of the anti-Stokes lines. This approach is inconsistent with the quantum mechanical treatment in which the third common level is introduced as a mathematical expedient and is not involved directly in the scattering process (9). [Pg.297]

Farrow R. L., Rahn L. A. Interpreting coherent anti-Stokes Raman spectra measured with multimode Nd YAG pump lasers, J. Opt. Soc. Am. B2, 903-7 (1985). [Pg.291]

The present study demonstrates that the analytic calculation of hyperpolarizability dispersion coefficients provides an efficient alternative to the pointwise calculation of dispersion curves. The dispersion coefficients provide additional insight into non-linear optical properties and are transferable between the various optical processes, also to processes not investigated here as for example the ac-Kerr effect or coherent anti-Stokes Raman scattering (CARS), which depend on two independent laser frequencies and would be expensive to study with calculations ex-plictly frequency-dependent calculations. [Pg.142]

In order to extend the range of 2laser excitation, both CARS (Coherent Anti-Stokes Raman Scattering) and CSRS (Coherent Stokes Raman Scattering) are used. In both cases <03 = 2003 -U2 In the CARS mode 0)3 > wj > (03 in the CSRS mode <02 > (1)3. One-photon resonance effects are the same in both cases as described later. Phase matching is also the same in both cases with 3 = 2 ... [Pg.200]


See other pages where Anti-Stokes lasers is mentioned: [Pg.66]    [Pg.508]    [Pg.591]    [Pg.591]    [Pg.66]    [Pg.508]    [Pg.591]    [Pg.591]    [Pg.1204]    [Pg.1206]    [Pg.1214]    [Pg.2082]    [Pg.127]    [Pg.237]    [Pg.208]    [Pg.318]    [Pg.431]    [Pg.134]    [Pg.164]    [Pg.296]    [Pg.4]    [Pg.159]    [Pg.266]    [Pg.709]    [Pg.710]    [Pg.123]    [Pg.459]    [Pg.84]    [Pg.101]    [Pg.150]    [Pg.36]   
See also in sourсe #XX -- [ Pg.591 ]




SEARCH



Anti-stokes

© 2024 chempedia.info