Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anthracene composition

Most coal chemicals are obtained from high temperature tar with an average yield over 5% of the coal which is carbonized. The yields in coking are about 70% of the weight of feed coal. Tars obtained from vertical gas retorts have a much more uniform chemical composition than those from coke ovens. Two or more coals are usually blended. The conditions of carbonization vary depending on the coals used and affect the tar composition. Coal-tar chemicals include phenols, cresols, xylenols, benzene, toluene, naphthalene, and anthracene. [Pg.234]

Dissolve naphthalene in a little spirit, and add an equal quantity of a solution of picric acid in spirit. On cooling, yellow needles of naphthalene picrate separate, C,oHg.CQH20H(NO,)3. Benzene forms colourless crystals, anthracene, scarlet needles, having a similar composition. Sec Appendix, p. 295. [Pg.186]

Coman et al. [82] used a new modeling of the chromatographic separation process of some polar (hydroxy benzo[a]pyrene derivatives) and nonpolar (benzo[a]pyrene, dibenz[a,/ ]anthracene, and chrysene) polycyclic aromatic compounds in the form of third-degree functions. For the selection of the optimum composition of the benzene-acetone-water mobile phase used in the separation of eight polycyclic aromatic compounds on RP-TLC layers, some computer programs in the GW-BASIC language were written. [Pg.93]

For example, Beynon and Cwm coals when digested in anthracene oil give extraction yields of 68% and 47% respectively. This variation can be explained by reference to the maceral composition of the coals. Beynon coal contains a lower concentration of inertinite than the Cwm coal (Table V). In experiments where relatively pure samples of petrographic species were digested in anthracene oil, exinite and vitrinite were shown to be highly soluble, whilst in comparison the inertinite was almost completely insoluble. Similar variations in reactivity of macerals have been reported from studies of solubility in pure organic solvents (1(3). [Pg.128]

A system of classifying coals for solvent extraction, based upon the extent of extraction when using anthracene oil and phenanthrene as solvents has been developed. The reactivity of the coals can be conveniently presented by superimposing the results on Seyler s coal chart. The effects of variations in maceral composition are also discussed. [Pg.133]

Fig. 10 Composition and spatial distribution of the main patterns of contamination identified in sediment of the Ebro River basin from year 2004 to 2006. Different temporal distribution of the PAHs pattern of contamination over the territory and constant distribution in time of the APs and heavier PAHs as well as the OCs pattern. Big circles representing higher levels of pattern contribution than small circles. Variables identification 1, naphthalene 2, acenaphtylene 3, acenapthene 4, fluorene 5, phenanthrene 6, anthracene 7, fluoranthene 8, pyrene 9, benzo(a) anthracene 10, chrysene 11, benzo(b)fluoranthene 12, benzo(k)fluoranthene 13, benzo(a)pyr-ene 14, indeno(l,2,3-cd)pyrene 15, dibenzo(a,h)anthracene 16, benzo(g,h,i)perylene 17, octyl-phenol 18, nonylphenol 19, tributylphosphate 20, a-HCH 21, HCB 22,2,4-DDE 23,4,4-DDE 24, 2,4-DDD 25, 4,4-DDD 26, 2,4-DDT 27, 4,4-DDT... Fig. 10 Composition and spatial distribution of the main patterns of contamination identified in sediment of the Ebro River basin from year 2004 to 2006. Different temporal distribution of the PAHs pattern of contamination over the territory and constant distribution in time of the APs and heavier PAHs as well as the OCs pattern. Big circles representing higher levels of pattern contribution than small circles. Variables identification 1, naphthalene 2, acenaphtylene 3, acenapthene 4, fluorene 5, phenanthrene 6, anthracene 7, fluoranthene 8, pyrene 9, benzo(a) anthracene 10, chrysene 11, benzo(b)fluoranthene 12, benzo(k)fluoranthene 13, benzo(a)pyr-ene 14, indeno(l,2,3-cd)pyrene 15, dibenzo(a,h)anthracene 16, benzo(g,h,i)perylene 17, octyl-phenol 18, nonylphenol 19, tributylphosphate 20, a-HCH 21, HCB 22,2,4-DDE 23,4,4-DDE 24, 2,4-DDD 25, 4,4-DDD 26, 2,4-DDT 27, 4,4-DDT...
Fig. 11 Composition of the identified patterns of contamination (loadings) in sediment and soil of the Ebro River basin and patterns contribution to the analyzed samples (scores) in fall from year 2004 to 2006. Samples ordered for both compartments from first to third sampling campaigns and, for each campaign, from NW to SE. Variables identification 1, acenaphtylene 2, phenanthrene 3, anthracene 4, fluoranthene 5, pyrene 6, benzo(a)anthracene 7, chrysene 8, benzo(b)fluor-anthene 9, benzo(k)fluoranthene 10, benzo(a)pyrene 11, indeno(l,2,3-cd)pyrene 12, dibenzo (a.h)anthracene 13, benzo(g,h,i)perylene 14, tributylphosphate 15, 4,4-DDE... Fig. 11 Composition of the identified patterns of contamination (loadings) in sediment and soil of the Ebro River basin and patterns contribution to the analyzed samples (scores) in fall from year 2004 to 2006. Samples ordered for both compartments from first to third sampling campaigns and, for each campaign, from NW to SE. Variables identification 1, acenaphtylene 2, phenanthrene 3, anthracene 4, fluoranthene 5, pyrene 6, benzo(a)anthracene 7, chrysene 8, benzo(b)fluor-anthene 9, benzo(k)fluoranthene 10, benzo(a)pyrene 11, indeno(l,2,3-cd)pyrene 12, dibenzo (a.h)anthracene 13, benzo(g,h,i)perylene 14, tributylphosphate 15, 4,4-DDE...
For potentiation of photosensitizing properties of fullerenes C60 to the composition of their molecules antenna is being introduced, for example, porphyrine, and anthracenal (Arbogast and Foote, 1991). [Pg.124]

Water colloid solutions of fullerenes C60 (10 4 M) were prepared as described in Scharff et al. (2004). Fullerene-aminopropylaerosyl (fullerene C60-composite-l) was synthesized (Golub et al., 2003) by the introduction of aminopropyl chains oriented ad extra by amine groups (0.9 mM/g), to the surface layer of sihcon dioxide nanoparticles that were bound to fullerene C60 (0.12 mM/g) (Fig. 6.1). Fullerene-anthracenaliminopropylaerosyl (fullerene C60-composite-2) was composed also from anthraccnaliminc (0.2mM/g) that was introduced via azomethine condensation of aldehyde group of anthracenal with surface amino group. [Pg.125]

After irradiation of fullerenes C60 in the cell medium, ROS production has been detected, and this index increased as follow fullerene C60 < fullerene C60-compos-ite-1 < fullerene C -composite-2. As one may see from the data presented in Table 6.1, the rate of ROS generation elevated nearly twice after absorption of light in predetermined range by fullerenes C60, if fullerene C60 was bound to the surface of aminopropylaerosyl, and threefold, if anthracenal that absorbs at X = 357nm was introduced to the content of composite. [Pg.127]

P. J. van Bladeren, J. M. Sayer, D. E. Ryan, P. E. Thomas, W. Levin, D. M. Jerina, Differential Stereoselectivity of Cytochrome P450b and P450c in the Formation of Naphthalene and Anthracene 1,2-Oxides. The Role of Epoxide Hydrolase in Determining the Enantiomer Composition of the 1,2-Dihydrodiols Formed ,. /. Biol. Chem. 1985, 260, 10226- 10235. [Pg.671]

FIGURE 9.19 Effect of mobile phase composition on shape selectivity with a monomeric octadecylpolysiloxane stationary phase, column using (a) SRM 869a (b) triphenylene/o—terphenyl (c) chrysene/benzo[a]anthracene with column outlet pressure 20.0 MPa and flow rate 1 mL/min at pump head. (Reprinted from J. W. Coym, J. G. Dorsey, J. Chromatogr. A, 971 61 (2002). With permission.)... [Pg.444]

Fig. 4. Oraph Olustfuting Uie dependence of capacity ratios on the composition of eluents containing n-heptane and dichloromethane. The stationary phase is LiChrosorb SI 100 silica gel. Sample A, ethyl benzene B. anthracene C, m-terphenyl D, nitrobenzene F. benzonitrile F, benzophenone O, acetophenone H, l,4..Vxylenol I, r>-nitroaniline J, m nitioaniline K, A -cholestenone L, p-nitroaniline. Fig. 4. Oraph Olustfuting Uie dependence of capacity ratios on the composition of eluents containing n-heptane and dichloromethane. The stationary phase is LiChrosorb SI 100 silica gel. Sample A, ethyl benzene B. anthracene C, m-terphenyl D, nitrobenzene F. benzonitrile F, benzophenone O, acetophenone H, l,4..Vxylenol I, r>-nitroaniline J, m nitioaniline K, A -cholestenone L, p-nitroaniline.
However, it should be noted that even where kerosene heaters do not contribute significantly to particle mass concentrations, they may still be important in terms of health effects. This is because of the composition of the particles emitted, which include polycyclic aromatic compounds and other mutagenic species, as well as sulfate (Leaderer et al., 1990 Traynor et al., 1990). For example, Traynor et al. (1990) studied the emissions from unvented kerosene space heaters and identified a number of PAHs (naphthalene, phenanthrene, fluoranthene, anthracene, chrysene, and indeno[c,rf]pyrene) and nitro-PAHs (1-nitronaphtha-lene, 9-nitroanthracene, 3-nitrofluoranthene, and 1-nit-ropyrene), in addition to a host of other gaseous species. Baek et al. (1997) also reported increased levels of a number of gases indoors in homes and offices in Korea due to the use of kerosene heaters. [Pg.863]

Transfer from T2 of anthracene has also been invoked in several nonrigid systems 235,236 for example, the product composition from the well-studied 237... [Pg.292]

Oxman et al. (3) determined that cure speed and enthalpy were improved in photopolymerizable compositions when using anthracene derivatives containing electron donors as photoinitators for cationic curing. Dimethoxy-, diethoxy-, and diphenoxyanthracene were especially preferred. [Pg.119]

Gschwend and Hites (1981) observed that the two closely related polycyclic aromatic hydrocarbons, phenanthrene and anthracene, occur in a ratio of about 3-to-l in urban air. In contrast, sedimentary deposits obtained from remote locations (e.g., Adirondack mountain ponds) exhibited phenanthrene-to-anthracene ratios of 15-to-l. You hypothesize that these chemicals are co-carried in aerosol droplets from Midwestern U.S. urban environments via easterly winds to remote locations (like the Adirondacks) where the aerosol particles fall out of the atmosphere and rapidly accumulate in the ponds sediment beds without any further compositional change (i.e., the phenanthrene-to-anthracene ratio stops changing after the aerosols leave the air). If summertime direct photolysis was responsible for the change in phenanthrene-to-anthracene ratio, estimate how long the aerosols would have to have been in the air. Comment on the assumptions that you make. What are your conclusions ... [Pg.654]

The properties are very sensitive to composition and the charge carriers are apparently positive. Other studies have shown poly(acenaph-thalene) to be only slightly photo-conductive while the nitrated polymer exhibits a photocurrent dependent upon the degree of nitration (100). Since the number of mobile n electrons is the same as in poly (vinyl naphthalene), the authors conclude that some form of stereoregularity is required for enhanced conductivity. Complexes of poly(vinyl anthracene) with halogen molecules show enhanced conductivity and reduced activation energy which is thought to be typical of an electronic semiconductor (101). [Pg.341]

Some methane is manufactured hv the distillation of coal. Coal is a combustible nick formed from the remains of decayed vegetation. Ii is ihe only rock containing significant amounls of carbon. The elemental composition of coal varies between 60% and 95% carbon. Coal also contains hydrogen and oxygen, with small concentrations of nitrogen, chlorine, sulfur, and several metals. Coals are classified by the amount of volatile material they contain, that is. by how much of Ihe mass is vaporized when the coal is healed to about 900 C in the absence of air. Coal that contains more than 15% volatile material is called bituminous coal. Substances released from bituminous coal when it is distilled, in addition to methane, include water, carbon dioxide, ammonia, benzene, toluene, naphthalene, and anthracene In addition, the distillation also yields oils, tars, and sulfur-containing products. The non-volatile component of coal, which remains after distillation, is coke. Coke is almost pure carbon and is an excellent fuel, However, it may contain metals, such as arsenic and lead, which can he serious pollutants if ihe combustion products are released into the atmosphere. [Pg.991]

Exercise 24-15 Tetracyanoethene in benzene forms an orange solution, but when this solution is mixed with a solution of anthracene in benzene, a brilliant blue-green color is produced, which fades rapidly colorless crystals of a compound of composition C14H10-C2(CN)4 then are deposited. Explain the color changes that occur and write a structure for the crystalline product. [Pg.1193]

Fig. 2.20. Composition (mean%) of 16 individual polycyclic aromatic hydrocarbons (PAHs) to total PAHs detected in various environmental media in (a) air (n = 24), (b) soil (n = 226), (c) freshwater (n = 46), and (d) marine sediment (n = 159), from the South Korea. Naphthalene NAP, Acenaphthylene ACY, Acenaphthene ACE, Fluorine FLU, Phenanthrene PHE, Anthracene ANT, Fluoranthene FLT, Pyrene PYR, Benz[a]ant-hracene BaA, Chrysene CHR, Benzo[6]fluoranthene BbF, Benzo[ ]fluoranthene BkF, Benzo[a]pyrene BaP, Indeno[l,2,3,c,d]pyrene I123cdP, Dibenz[a,/z]anthracene DahA, Ben-zo[g,/y ]perylene BghiP. Fig. 2.20. Composition (mean%) of 16 individual polycyclic aromatic hydrocarbons (PAHs) to total PAHs detected in various environmental media in (a) air (n = 24), (b) soil (n = 226), (c) freshwater (n = 46), and (d) marine sediment (n = 159), from the South Korea. Naphthalene NAP, Acenaphthylene ACY, Acenaphthene ACE, Fluorine FLU, Phenanthrene PHE, Anthracene ANT, Fluoranthene FLT, Pyrene PYR, Benz[a]ant-hracene BaA, Chrysene CHR, Benzo[6]fluoranthene BbF, Benzo[ ]fluoranthene BkF, Benzo[a]pyrene BaP, Indeno[l,2,3,c,d]pyrene I123cdP, Dibenz[a,/z]anthracene DahA, Ben-zo[g,/y ]perylene BghiP.

See other pages where Anthracene composition is mentioned: [Pg.750]    [Pg.99]    [Pg.21]    [Pg.128]    [Pg.24]    [Pg.1398]    [Pg.640]    [Pg.232]    [Pg.125]    [Pg.128]    [Pg.133]    [Pg.57]    [Pg.393]    [Pg.25]    [Pg.236]    [Pg.355]    [Pg.153]    [Pg.177]    [Pg.342]    [Pg.1195]    [Pg.230]    [Pg.510]    [Pg.97]    [Pg.456]    [Pg.74]    [Pg.65]    [Pg.250]    [Pg.271]   


SEARCH



Composition of anthracene oil

© 2024 chempedia.info