Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anion nucleophilic reagents

Anionic nucleophilic reagents Nu = CH30, C2HsO, /-BuO, CH3S, and were found to react with... [Pg.1282]

These reactions are carried out in aqueous/organic two-phase solvent systems with one of the reagents in an alkali metal salt form. Some examples of the anionic nucleophilic reagents (Y) are hydroxides, halides, cyanides, sulfides, cyanamides, carboxylates, sulfonates, and so forth. In fact, one of the most studied PEG phase transfer catalyzed reaction is the formation of carboxylate esters, such as acetates [159,1601. [Pg.297]

The most frequently encountered nucleophiles in functional group transformations are anions which are used as their lithium sodium or potassium salts If we use M to represent lithium sodium or potassium some representative nucleophilic reagents are... [Pg.327]

Nucleophiles other than Gngnard reagents also open epoxide rings These reac tions are carried out in two different ways The first (Section 16 12) involves anionic nucleophiles in neutral or basic solution... [Pg.678]

Sinulatly, nucleophilic reagents are suitable for addition reactions only if they are not so strongly basic as to produce the cyanamide anion in large amounts. In such cases, dicyandiamide is produced or a cyanamide salt is obtained. Ai,Ai-Disubstituted cyanamides do not ionize, of course, and react easily with strongly basic nucleophiles. [Pg.367]

It resembles tetracyanoethylene in that it adds reagents such as hydrogen (31), sulfurous acid (31), and tetrahydrofuran (32) to the ends of the conjugated system of carbon atoms suffers displacement of one or two cyano groups by nucleophilic reagents such as amines (33) or sodiomalononittile (34) forms TT-complexes with aromatic compounds (35) and takes an electron from iodide ion, copper, or tertiary amines to form an anion radical (35,36). The anion radical has been isolated as salts of the formula (TCNQ) where is a metal or ammonium cation, and n = 1, 1.5, or 2. Some of these salts have... [Pg.404]

The fluoride [NS(0)F]3 is more stable thermally and towards nucleophilic reagents than the corresponding chloride. For example, 8.15a is hydrolyzed by water to NH(S02NH2)2, whereas sulfanuric fluoride is unaffected by cold water. In warm water, however, hydrolysis occurs to give the [N3S304F2] anion. All three fluorine atoms in [NS(0)F]3 can be replaced by primary or secondary amines at 80-90°C in the absence of a solvent. Mono- or diphenyl derivatives can be prepared by treatment of [NS(0)F]3 with PhLi in diethyl ether at -70°C, while the Friedel-Crafts reaction with benzene at reflux in the presence of AICI3 gives two isomers of [NS(0)Ph]3. ... [Pg.154]

When a positively charged substituent such as the trimethylam-monio group is anywhere on the ring, but most effectively when it is ortho to the leaving group, it can favorably affect the entropy of activation with anionic nucleophiles and accelerate reaction. A recent example of reagent-substituent interaction is the electrophilic substitution of 2-carboxybiphenyl, nitration (non-polar solvent) of which occurs only at the 2 -position and not the 4 -position and has been postulated to be due to the interaction of the nitronium ion with the carboxyl group. [Pg.219]

It is interesting to note that the oxidation of sulphoxides by peracids is faster in alkaline than in acidic solution. This is in contrast to the oxidation of sulphides and amines with the same reagents " . The oxidation rate of ortho-substituted aryl alkyl sulphoxides with aromatic peracids is less than the corresponding meta- and para-substituted species due to steric hindrance of the incoming peracid anion nucleophiles . Steric bulk in the alkyl group also has some effect . Such hindrance is not nearly so important in the oxidation reaction carried out under acidic conditions . [Pg.975]

The electropositive metal center polarizes the peroxo group so that is much more electrophilic than free peroxide anion. Evidence has been accumulated, and it will be summarized later, that such polarization happens to the extent that nucleophilic reagents can attack a peroxo oxygen when it is coordinated to a d° metal. In other words, this situation... [Pg.162]

Formally, the allyl group is an anion in this complex, but owing to the high electrophilicity of palladium, the allyl group undergoes attack by nucleophilic reagents, especially soft nucleophiles. After this attack, palladium(O) leaves the allyl group and the product is obtained. (We say leaves , because indeed in... [Pg.273]

As seen from Table 4.2, activation energies of chlorine substitution in nitrochlorobenzenes under the action of diverse nucleophilic reagents are in agreement with a, of anion-radicals. Constants and of 4-chloronitrobenzene anion-radical are close to the and constants of nitrobenzene... [Pg.221]

In order to measure the absorption spectra, the radical anions were generated electrochemically in the optical path of a spectrophotometer. The absorption spectrum of 3,5-dinitroanisole radical anion (Figure 11, curve c) is very similar to that of the 550-570 nm species produced photochemically. So we believe this species to be the radical anion formed by electron transfer from the nucleophile to the excited 3,5-dinitroanisole and decaying by interaction with its surroundings including the nucleophile radical cation. The behaviour described seems to be rather general for aromatic nitro-compounds since it is observed with a series of these compounds with various nucleophilic reagents. [Pg.257]

In the absence of nucleophile, neither the 412 nm species nor the formation of the radical anion, nor that of the photosubstitution product is found. It is concluded therefore that the 412 nm species results from some kind of interaction between the (excited) aromatic compound and the nucleophilic reagent. The character of this aromatic compound-nucleophile-complex is as yet unknown. However, in our present view, the nature of the complex has to allow for the formation of both the radical anion and the photosubstitution product(s). An attractive possibility for this complex remains the a-complex, in formal analogy with the Meisenheimer complexes in the thermal nucleophilic reactions with aromatic compounds. An exciplex forms another possibility. [Pg.259]


See other pages where Anion nucleophilic reagents is mentioned: [Pg.283]    [Pg.82]    [Pg.99]    [Pg.69]    [Pg.71]    [Pg.74]    [Pg.87]    [Pg.102]    [Pg.307]    [Pg.310]    [Pg.316]    [Pg.185]    [Pg.311]    [Pg.302]    [Pg.54]    [Pg.339]    [Pg.779]    [Pg.779]    [Pg.307]    [Pg.207]    [Pg.29]    [Pg.80]    [Pg.234]    [Pg.108]    [Pg.743]    [Pg.142]    [Pg.658]    [Pg.315]    [Pg.29]    [Pg.54]    [Pg.125]    [Pg.315]    [Pg.862]   
See also in sourсe #XX -- [ Pg.127 , Pg.128 ]




SEARCH



Anion nucleophilicity

Anionic nucleophiles

Anionic reagents

Anions nucleophiles

Nucleophiles reagents

Nucleophilic anion

Nucleophilic reagents

© 2024 chempedia.info