Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anion enzyme adsorption

Enzyme activity loss because of non-productive adsorption on lignin surface was identified as one of the important factors to decrease enzyme effectiveness, and the effect of surfactants and non-catalytic protein on the enzymatic hydrolysis has been extensively studied to increase the enzymatic hydrolysis of cellulose into fermentable sugars [7, 9 19]. The reported study showed that the non-ionic surfactant poly(oxyethylene)2o-sorbitan-monooleate (Tween 80) enhanced the enzymatic hydrolysis rate and extent of newspaper cellulose by 33 and 14%, respectively [20]. It was also found that 30% more FPU cellulase activity remained in solution, and about three times more recoverable FPU activity could be recycled with the presence of Tween 80. Tween 80 enhanced enzymatic hydrolysis yields for steam-exploded poplar wood by 20% in the simultaneous saccharification and fermentation (SSF) process [21]. Helle et al. [22] reported that hydrolysis yield increased by as much as a factor of 7, whereas enzyme adsorption on cellulose decreased because of the addition of Tween 80. With the presence of poly(oxyethylene)2o-sorbitan-monolaurate (Tween 20) and Tween 80, the conversions of cellulose and xylan in lime-pretreated com stover were increased by 42 and 40%, respectively [23]. Wu and Ju [24] showed that the addition of Tween 20 or Tween 80 to waste newsprint could increase cellulose conversion by about 50% with the saving of cellulase loading of 80%. With the addition of non-ionic, anionic, and cationic surfactants to the hydrolysis of cellulose (Avicel, tissue paper, and reclaimed paper), Ooshima et al. [25] subsequently found that Tween 20 was the most effective for the enhancement of cellulose conversion, and anionic surfactants did not have any effect on cellulose hydrolysis. With the addition of Tween 20 in the SSF process for... [Pg.354]

Second, the GMA-grafted hollow fiber was immersed in 50 (v/v)% aqueous solution of diethylamine at 303 K for 1 h and subsequently in ethanolamine at 303 K for 6 h. Sixty mole% of the epoxy groups was converted to diethylamino groups to enhance the anion-exchange adsorption of the enzyme, and subsequently, ethanolamine was added to the remaining epoxy groups to reduce the nonselective adsorption of proteins. The resultant hollow fiber was referred to as a DEA-EA fiber. [Pg.688]

To avoid anion inhibition and to reduce autodecomposition of HjOj To reduce rate of side reactions To measure k before side reactions become appreciable To reduce enzyme adsorption on Warburg vessel surfaces... [Pg.367]

Alcohol oxidation by enzymes, 610-613 Alloy/bimetallic catalysts, 6-7, 70-71, 245-266, 317-337 Anderson-Newns Hamiltonian, 33-34 Anion adsorption effects, 143, 174-175, 208-239, 254, 281-283, 336, 525, 535-536... [Pg.694]

Figure 15.4(A) shows the effect of the R = Zn2+/Al3+ ratio, which determines the charge density of the LDH layer, on the Freundlich adsorption isotherms. K values are far higher than those measured for smectite or other inorganic matrices. The increase in Kf with the charge density (Kf= 215, 228, 325mg/g, respectively, for R = 4, 3 and 2) is supported by a mechanism of adsorption based on an anion exchange reaction. The desorption isotherms confirm that urease is chemically adsorbed by the LDH surface. The aggregation of the LDH platelets can affect noticeably their adsorption capacity for enzymes and the preparation of LDH adsorbant appears to be a determinant step for the immobilization efficiency. [ZnRAl]-urease hybrid LDH was also prepared by coprecipitation with R = 2, 3 and 4 and Q= urease/ZnRAl from 1 /3 up to 2.5. For Q < 1.0,100 % of the urease is retained by the LDH matrix whatever the R value while for higher Q values an increase in the enzyme/LDH weight ratio leads to a decrease in the percentage of the immobilized amount. Figure 15.4(A) shows the effect of the R = Zn2+/Al3+ ratio, which determines the charge density of the LDH layer, on the Freundlich adsorption isotherms. K values are far higher than those measured for smectite or other inorganic matrices. The increase in Kf with the charge density (Kf= 215, 228, 325mg/g, respectively, for R = 4, 3 and 2) is supported by a mechanism of adsorption based on an anion exchange reaction. The desorption isotherms confirm that urease is chemically adsorbed by the LDH surface. The aggregation of the LDH platelets can affect noticeably their adsorption capacity for enzymes and the preparation of LDH adsorbant appears to be a determinant step for the immobilization efficiency. [ZnRAl]-urease hybrid LDH was also prepared by coprecipitation with R = 2, 3 and 4 and Q= urease/ZnRAl from 1 /3 up to 2.5. For Q < 1.0,100 % of the urease is retained by the LDH matrix whatever the R value while for higher Q values an increase in the enzyme/LDH weight ratio leads to a decrease in the percentage of the immobilized amount.
Commercial yeast invertase (Bioinvert ) was immobilized by adsorption on anion-exchange resins, collectively named Dowex (1x8 50-400,1x4 50-400, and 1x2 100-400). Optimal binding was obtained at pH 5.5 and 32°C. Among different polystyrene beads, the complex Dowex-1x4-200/invertase showed a yield coupling and an immobilization coefficient equal to 100%. The thermodynamic and kinetic parameters for sucrose hydrolysis for both soluble and insoluble enzyme were evaluated. The complex Dowex/inver-tase was stable without any desorption of enzyme from the support during the reaction, and it had thermodynamic parameters equal to the soluble form. The stability against pH presented by the soluble invertase was between 4.0 and 5.0, whereas for insoluble enzyme it was between 5.0 and 6.0. In both cases, the optimal pH values were found in the range of the stability interval. The Km and Vmax for the immobilized invertase were 38.2 mM and 0.0489 U/mL, and for the soluble enzyme were 40.3 mM and 0.0320 U/mL. [Pg.145]

Adsorption of enzymes to various polymeric resins is a straightforward means for immobilization. Zwitterionic molecules such as proteins can bind to both anionic and cationic ion exchange resins. Hydrophobic macroporous resins are also useful for immobilizing many enzymes, particularly lipases. For example, an immobilized form of Candida antarctica lipase B (CAL-B) on acrylic resin has been sold for many years under the name, Novozym 435 (N435). The enzyme is produced in a modified Aspergillus organism by submerged fermentation and is subsequently adsorbed onto a macroporous... [Pg.1395]

Figure 2 Schematic illustration of the (transport) properties of the blood-brain barrier. Shown is the influence of astrocyte endfeet at the brain capillary endothelial cell. This cell has narrow tight junctions, low pinocytotic activity, many mitochondria, and luminal anionic sites that hinder the transport of negatively charged compounds. Passive hydrophilic transport occurs via paracellular diffusion (tight junctions), whereas passive lipophilic transport is a transcytotic process. Adsorptive-, receptor-, and carrier-mediated transport has been indicated. The metabolic properties of the BBB are illustrated by the various enzymes at the BBB [from (157), with permission]. Figure 2 Schematic illustration of the (transport) properties of the blood-brain barrier. Shown is the influence of astrocyte endfeet at the brain capillary endothelial cell. This cell has narrow tight junctions, low pinocytotic activity, many mitochondria, and luminal anionic sites that hinder the transport of negatively charged compounds. Passive hydrophilic transport occurs via paracellular diffusion (tight junctions), whereas passive lipophilic transport is a transcytotic process. Adsorptive-, receptor-, and carrier-mediated transport has been indicated. The metabolic properties of the BBB are illustrated by the various enzymes at the BBB [from (157), with permission].
For example, Yoon et al. report that the water adsorption isotherm for an immobilized lipase (Lipozyme IM) and pure scCOa follows eq (4.9-1) where w is the water concentration in the enzyme support (wt%), C is the water concentration in CO2 (mM) and Co is the water solubility in CO2 (mM) under system pressure and temperature [41], Marty et al. report water adsorption isotherms (33 °C, 40 °C, 50 °C) between a microporous anionic resin support and ethanol containing SCCO2 at three pressures (110, 130 and 170 bar) [9]. Water partitioning data for an anionic resin support and pure SCCO2 are also available [42,43]. [Pg.430]

The behavior of thrombin resembles that Hageman factor which is activated on anionic surfaces by adsorption. Generally, proteins are inactivated or denatured by adsorption (50-53) although the exact patterns of inactivation are different for the different enzyme groups. Thrombin and factor XI which relate to blood clotting appear to be stable than phosphatase, plasmin, and peroxidase. [Pg.72]


See other pages where Anion enzyme adsorption is mentioned: [Pg.4593]    [Pg.587]    [Pg.314]    [Pg.65]    [Pg.460]    [Pg.79]    [Pg.256]    [Pg.370]    [Pg.40]    [Pg.99]    [Pg.137]    [Pg.105]    [Pg.250]    [Pg.1337]    [Pg.272]    [Pg.126]    [Pg.222]    [Pg.225]    [Pg.5]    [Pg.243]    [Pg.134]    [Pg.141]    [Pg.296]    [Pg.76]    [Pg.77]    [Pg.307]    [Pg.1485]    [Pg.247]    [Pg.204]    [Pg.1370]    [Pg.65]    [Pg.592]    [Pg.373]    [Pg.209]    [Pg.586]    [Pg.176]    [Pg.397]    [Pg.64]    [Pg.68]    [Pg.94]   
See also in sourсe #XX -- [ Pg.373 ]




SEARCH



Adsorption anionics

Anion adsorption

© 2024 chempedia.info