Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

And the Claisen reaction

The intramolecular carbon-carbon bond-forming reactions considered in this section are based on the aldol condensation (see Section 5.18.2, p. 799), the Claisen-Schmidt reaction (see Section 6.12.2, p. 1032), the Claisen ester condensation (see Section 5.14.3, p. 736), and the Claisen reaction (see Section 6.12.2, p. 1032). Since these carbonyl addition reactions are reversible, the methods of synthesis are most successful for the formation of the thermodynamically stable five- and six-membered ring systems. The preparation of the starting materials for some of these cyclisation reactions further illustrates the utility of the Michael reaction (see Section, 5.11.6, p. 681). [Pg.1092]

This Condensation should not be confused with the Claisen Reaction, which is the condensation of an aldehyde with (i) another aldehyde, or (ii) a ketone, under the influence of sodium hydroxide, and with the elimination of water. For details, see Diben zal-acetone. p, 231. [Pg.265]

Place 32 g. of potassium ethyl xanthate (Section 111,166) and 50 ml. of absolute ethyl alcohol in a 500 ml. round-bottomed flask provided with a double surface condenser. Add 32 g. (16-5 ml.) of ethyl iodide. No reaction appears to take place in the cold. Heat on a water bath for 3 hours a reaction sets in within 15 minutes and the yellow reaction mixture becomes white owing to the separation of potassium iodide. Add about 150 ml. of water, separate the lower layer, and wash it with water. Dry it with anhydrous calcium chloride or anhydrous calcium sulphate and distil from a 50 ml. Claisen flask. Collect the ethyl S-ethyl xanthate at 196-198°. The yield is 23 g. [Pg.499]

Other reactions similar to the aldol addition include the Claisen and Perkin reactions. The Claisen reaction, carried out by combining an aromatic aldehyde and an ester in the presence of metallic sodium, is useful for obtaining a,P-unsaturated esters. [Pg.471]

Ba.se Catalyzed. Depending on the nature of the hydrocarbon groups attached to the carbonyl, ketones can either undergo self-condensation, or condense with other activated reagents, in the presence of base. Name reactions which describe these conditions include the aldol reaction, the Darzens-Claisen condensation, the Claisen-Schmidt condensation, and the Michael reaction. [Pg.487]

Ludwig Claisen was a German chemist who worked during the last two decades of the nineteenth century and the first two decades of the twentieth. His name is associated with three reactions. The Claisen-Schmidt reaction was presented in Section 18.10, the Claisen condensation is discussed in this section, and the Claisen rearrangement will be introduced in Section 24.13. [Pg.887]

Tire mechanism of the Claisen condensation is similar to that of the aldol condensation and involves the nucleophilic addition of an ester enolate ion to the carbonyl group of a second ester molecule. The only difference between the aldol condensation of an aldeiwde or ketone and the Claisen condensation of an ester involves the fate of the initially formed tetrahedral intermediate. The tetrahedral intermediate in the aldol reaction is protonated to give an alcohol product—exactly the behavior previously seen for aldehydes and ketones (Section 19.4). The tetrahedral intermediate in the Claisen reaction, however, expels an alkoxide leaving group to yield an acyl substitution product—exactly the behavior previously seen for esters (Section 21.6). The mechanism of the Claisen condensation reaction is shown in Figure 23.5. [Pg.888]

The Claisen reaction is a carbonyl condensation that occurs between two ester molecules and gives a /3-keto ester product. Mixed Claisen condensations... [Pg.904]

In the presence of a strong base, the ot carbon of a carboxylic ester can condense with the carbonyl carbon of an aldehyde or ketone to give a P-hydroxy ester, which may or may not be dehydrated to the a,P-unsaturated ester. This reaction is sometimes called the Claisen reaction,an unfortunate usage since that name is more firmly connected to 10-118. In a modem example of how the reaction is used, addition of tert-butyl acetate to LDA in hexane at -78°C gives the lithium salt of ferf-butyl acetate, " (12-21) an enolate anion. Subsequent reaction a ketone provides a simple rapid alternative to the Reformatsky reaction (16-31) as a means of preparing P-hydroxy erf-butyl esters. It is also possible for the a carbon of an aldehyde or ketone to add to the carbonyl carbon of a carboxylic ester, but this is a different reaction (10-119) involving nucleophilic substitution and not addition to a C=0 bond. It can, however, be a side reaction if the aldehyde or ketone has an a hydrogen. [Pg.1224]

Even if organocatalysis is a common activation process in biological transformations, this concept has only recently been developed for chemical applications. During the last decade, achiral ureas and thioureas have been used in allylation reactions [146], the Bayhs-Hillman reaction [147] and the Claisen rearrangement [148]. Chiral organocatalysis can be achieved with optically active ureas and thioureas for asymmetric C - C bond-forming reactions such as the Strecker reaction (Sect. 5.1), Mannich reactions (Sect. 5.2), phosphorylation reactions (Sect. 5.3), Michael reactions (Sect. 5.4) and Diels-Alder cyclisations (Sect. 5.6). Finally, deprotonated chiral thioureas were used as chiral bases (Sect. 5.7). [Pg.254]

The differences in the rate constant for the water reaction and the catalyzed reactions reside in the mole fraction of substrate present as near attack conformers (NACs).171 These results and knowledge of the importance of transition-state stabilization in other cases support a proposal that enzymes utilize both NAC and transition-state stabilization in the mix required for the most efficient catalysis. Using a combined QM/MM Monte Carlo/free-energy perturbation (MC/FEP) method, 82%, 57%, and 1% of chorismate conformers were found to be NAC structures (NACs) in water, methanol, and the gas phase, respectively.172 The fact that the reaction occurred faster in water than in methanol was attributed to greater stabilization of the TS in water by specific interactions with first-shell solvent molecules. The Claisen rearrangements of chorismate in water and at the active site of E. coli chorismate mutase have been compared.173 It follows that the efficiency of formation of NAC (7.8 kcal/mol) at the active site provides approximately 90% of the kinetic advantage of the enzymatic reaction as compared with the water reaction. [Pg.415]

Crossed Claisen reactions with two different esters, each of which has a-H atoms, are seldom useful synthetically as there are, of course, four possible products. Crossed Claisen reactions are, however, often useful when one of the two esters has no a-H atoms, e.g. HCOzEt, ArC02Et, (C02Et)2, etc., as this can act only as a carbanion acceptor. Such species are in fact good acceptors, and the side reaction of the self-condensation of the other, e.g. RCH2C02Et, ester is not normally a problem. Intramolecular Claisen reactions, where both C02Et groups are part of the same molecule [e.g. (123)], are referred to as Dieckmann cyclisations. These work best, under simple conditions, for the formation of the anions of 5-, 6- or 7-membered cyclic / -ketoesters... [Pg.230]

The scope of the reaction has been successfully extended to a,p-ethylenic aldehydes,5 esters,6 and amides7 as well as to a,p-acetylenic ketones8 (see Table IV). With esters, the reaction must be performed in the presence of chlorotrimethylsilane (MeaSiCI) to avoid the Claisen reaction by trapping the intermediate enolate. In most cases the organomanganese procedure is simple and more efficient than the organocopper procedure. [Pg.222]

However, the reaction is not quite that simple, and to understand and utilize the Claisen reaction we have to consider pAT values again. Loss of ethoxide from the addition anion is not really favourable, since ethoxide is not a particularly good leaving group. This is because ethoxide is a strong base, the conjugate base of a weak acid (see Section 6.1.4). So far then, the reaction will be reversible. What makes it actually proceed further is the fact that ethoxide is a strong base, and able to ionize acids. The ethyl acetoacetate prodnct is a 1,3-dicarbonyl componnd and has relatively acidic protons on the methylene between the two carbonyls (see Section 10.1). With... [Pg.380]

In Box 10.12 we saw that nature employs a Claisen reaction between two molecules of acetyl-CoA to form acetoacetyl-CoA as the first step in the biosynthesis of mevalonic acid and subsequenfiy cholesterol. This was a direct analogy for the Claisen reaction between two molecules of ethyl acetate. In fact, in nature, the formation of acetoacetyl-CoA by this particular reaction using the enolate anion from acetyl-CoA is pretty rare. [Pg.392]

The Claisen reaction can now proceed smoothly, but nature introduces another little twist. The carboxyl group introduced into malonyl-CoA is simultaneously lost by a decarboxylation reaction during the Claisen condensation. Accordingly, we now see that the carboxylation step helps to activate the a-carbon and facilitate Claisen condensation, and the carboxyl is immediately removed on completion of this task. An alternative rationalization is that decarboxylation of the malonyl ester is used to generate the acetyl enolate anion without any requirement for a strong base (see Box 10.17). [Pg.595]

In this case, we formulate the Claisen reaction between two ester molecules as enolate anion formation, nucleophilic attack, then loss of the leaving group. Now reverse it. Use hydroxide as the nucleophile to attack the ketone carbonyl, then expel the enolate anion as the leaving group. All that remains is protonation of the enolate anion, and base hydrolysis of its ester function. [Pg.659]

Asymmetric allylic C-H activation of more complex substrates reveals some intrinsic features of the Rh2(S-DOSP)4 donor/acceptor carbenoids [135, 136]. Cyclopropanation of trans-disubstituted or highly substituted alkenes is rarely observed, due to the steric demands of these carbenoids [16]. Therefore, the C-H activation pathway is inherently enhanced at substituted allylic sites and the bulky rhodium carbenoid discriminates between accessible secondary sites for diastereoselective C-H insertion. As a result, the asymmetric allylic C-H activation provides alternative methods for the preparation of chiral molecules traditionally derived from classic C-C bond-forming reactions such as the Michael reaction and the Claisen rearrangement [135, 136]. [Pg.332]

The reactions described in this chapter include some of the most useful synthetic methods for carbon-carbon bond formation the aldol and Claisen condensations, the Robinson annulation, and the Wittig reaction and related olefination methods. All of these reactions begin by the addition of a carbon nucleophile to a carbonyl group. The product which is isolated depends on the nature of the substituent (X) on the carbon nucleophile, the substituents (A and B) on the carbonyl group, and the ways in which A, B, and X interact to control the reaction pathways available to the addition intermediate. [Pg.57]


See other pages where And the Claisen reaction is mentioned: [Pg.231]    [Pg.94]    [Pg.305]    [Pg.63]    [Pg.1335]    [Pg.66]    [Pg.230]    [Pg.382]    [Pg.596]    [Pg.609]    [Pg.658]    [Pg.138]   
See also in sourсe #XX -- [ Pg.1224 ]




SEARCH



The Claisen Reaction

The Crossed Claisen and Related Reactions

© 2024 chempedia.info