Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amorphous state thermal properties

Thermal Properties. Before considering conventional thermal properties such as conductivity it is appropriate to consi r briefly the effect of temperature on the mechanical properties of plastics. It was stated earlier that the properties of plastics are markedly temperature dependent. This is as a result of their molecular structure. Consider first an amorphous plastic in which the molecular chains have a random configuration. Inside the material, even though it is not possible to view them, we loiow that the molecules are in a state of continual motion. As the material is heated up the molecules receive more energy and there is an increase in their relative movement. This makes the material more flexible. Conversely if the material is cooled down then molecular mobility decreases and the material becomes stiffer. [Pg.30]

In the molten state polymers are viscoelastic that is they exhibit properties that are a combination of viscous and elastic components. The viscoelastic properties of molten polymers are non-Newtonian, i.e., their measured properties change as a function of the rate at which they are probed. (We discussed the non-Newtonian behavior of molten polymers in Chapter 6.) Thus, if we wait long enough, a lump of molten polyethylene will spread out under its own weight, i.e., it behaves as a viscous liquid under conditions of slow flow. However, if we take the same lump of molten polymer and throw it against a solid surface it will bounce, i.e., it behaves as an elastic solid under conditions of high speed deformation. As a molten polymer cools, the thermal agitation of its molecules decreases, which reduces its free volume. The net result is an increase in its viscosity, while the elastic component of its behavior becomes more prominent. At some temperature it ceases to behave primarily as a viscous liquid and takes on the properties of a rubbery amorphous solid. There is no well defined demarcation between a polymer in its molten and rubbery amorphous states. [Pg.134]

Spiro-shaped HTMs have been studied extensively (Scheme 3.16) [88,89], The introduction of a spiro center improves the thermal stability of the amorphous state without significantly changing charge-transport properties. Compared with using NPD, TPD HTMs, using 43 in ITO/HTM/Alq3/LiF/Al devices showed very high luminescent efficiency [90]. [Pg.317]

The thermal properties of polymers include their behavior during heating from the solid amorphous (glassy) or crystalline to the liquid (molten) state, but also their chemical and mechanical stability in the entire range of application. [Pg.145]

The preceding structural characteristics dictate the state of polymer (rubbery vs. glassy vs. semicrystalline) which will strongly affect mechanical strength, thermal stability, chemical resistance and transport properties [6]. In most polymeric membranes, the polymer is in an amorphous state. However, some polymers, especially those with flexible chains of regular chemical structure (e.g., polyethylene/PE/, polypropylene/PP/or poly(vinylidene fluoride)/PVDF/), tend to form crystalline... [Pg.22]

PEBA exhibit a two-phase (crystalline and amorphous) structure and can be classified as a flexible nylon. Physical, chemical, and thermal properties can be modified by appropriate combination of different amounts of polyamide and polyether blocks [149], Hydrophilic PEBAs can be prepared which can have specific applications in medical devices. Similarly to other thermoplastic elastomers, the poiyamide-based ones find applications in automotive components, sporting goods conveyor belting, adhesives, and coatings [150]. In recent years the world consumption was approximately 6400 tons per year with about 80% in Western Europe and the rest equally split between the United States and Japan [143],... [Pg.726]

Several methods have been used to produce different types of OL-1, OMS-1, and OMS-2 materials. The materials that are produced by various methods lead to vastly different materials, that have unique chemical and physical properties. Some of the properties that can be controlled are particle size, color, morphology, average manganese oxidation state, thermal stability, ion-exchange capacity, electrical conductivity, magnetic properties, crystallinity, defect density, desorption of oxygen, and catalytic properties. Table IV summarizes 16 different classes of OMS-1, OMS-2, OL-1, and amorphous manganese oxide (AMO) materials that we have prepared. These materials are separated into different classes because they show different crystalline, chemical and physical properties. For the case of OMS-1 these materials... [Pg.59]

Poly(ethylene terephthalate) Poly(ethylene terephthalate) is a widely used semicrystalline polymer. The macroscopic properties of PET such as thermal, mechanical, optical, and permeation properties depend on its specific internal morphologies and microstructure arrangement. It can be quenched into the completely amorphous state, whereas thermal and thermomechanical treatments lead to partially crystallized samples with easily controlled degrees of crystallinity. The crystallization behavior of thermoplastic polymers is strongly affected by processing conditions [91-93]. [Pg.121]

Electrical properties of thin rare earth oxide film have also been studied. The conductivity of praseodymium thin film oxide was measured as a function of temperature and oxygen pressure [9]. The oxide film was found to act as a p-type conduction at temperatures high than 630°C and was a n-type semiconductor at the temperatures of 400-630°C. Thermally evaporated EU2O3 thin film on a glass substrate is also obtained in an amorphous state. From the measurement of frequency dependence of the ac conductance, the predominant mechanism could be ascribed to the result of a hopping type. The ac conductivity measurements were also carried out for thin film of SC2O3 at temperatures between 4 and 295 K [10]. The conductivity was found to obey the relationship of ai(ffl)=Aco which depends on frequency and s is dependent on temperature and is a little lower than unity. By using a classical hop mechanism between randomly distributed localized states, a model was proposed and applied to scandium oxide with the assumption that the localized states are caused by lattice vacancies. The model is expected to be... [Pg.261]

In the field of high temperature thermal insulation advantage is taken of the special powder properties and the amorphous character of fumed silicas. In principle, mixtures of fumed silicas, an opacifier to reflect the heat radiation and a small quantity of mineral fibers for reinforcing are used for temperatures up to 1000°C. It is necessary to density the mixture to approximately 200 g/1 to obtain the minimum of the superposition of gas and the solid state thermal conduction. Important is also the absence of mineralizing ions, like sodium or potassium, to prevent sintering effects. Commercial thermal insulation systems based on this principle have thermal conductivities of approximately 25 mW/mK at a mean temperature of 200°C and of approximately 30 mW/mK at a mean temperature of 4(X)°C. Therefore, they are... [Pg.586]


See other pages where Amorphous state thermal properties is mentioned: [Pg.204]    [Pg.97]    [Pg.123]    [Pg.159]    [Pg.44]    [Pg.317]    [Pg.48]    [Pg.226]    [Pg.312]    [Pg.356]    [Pg.290]    [Pg.112]    [Pg.79]    [Pg.333]    [Pg.666]    [Pg.76]    [Pg.410]    [Pg.1497]    [Pg.29]    [Pg.13]    [Pg.351]    [Pg.79]    [Pg.702]    [Pg.215]    [Pg.503]    [Pg.13]    [Pg.351]    [Pg.165]    [Pg.182]    [Pg.248]    [Pg.5]    [Pg.398]    [Pg.619]    [Pg.18]    [Pg.122]    [Pg.269]    [Pg.25]    [Pg.48]    [Pg.1139]   
See also in sourсe #XX -- [ Pg.42 ]




SEARCH



State property

Thermal amorphization

Thermalized state

© 2024 chempedia.info