Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonia large-scale

On the large scale, nitric acid is now made in large quantities by the catalytic oxidation of ammonia, employing the reaction ... [Pg.238]

The ratio of reactants had to be controlled very closely to suppress these impurities. Recovery of the acrylamide product from the acid process was the most expensive and difficult part of the process. Large scale production depended on two different methods. If soHd crystalline monomer was desired, the acrylamide sulfate was neutralized with ammonia to yield ammonium sulfate. The acrylamide crystallized on cooling, leaving ammonium sulfate, which had to be disposed of in some way. The second method of purification involved ion exclusion (68), which utilized a sulfonic acid ion-exchange resin and produced a dilute solution of acrylamide in water. A dilute sulfuric acid waste stream was again produced, and, in either case, the waste stream represented a... [Pg.134]

Manufacture and Economics. Nitrogen tritiuoride can be formed from a wide variety of chemical reactions. Only two processes have been technically and economically feasible for large-scale production the electrolysis of molten ammonium acid fluoride and the direct fluorination of the ammonia in the presence of molten ammonium fluoride. In the electrolytic process, NF is produced at the anode and H2 is produced at the cathode. In a divided cell of 4 kA having nickel anodes, extensive dilution of the gas streams with N2 was used to prevent explosive reactions between NF and H2 (17). [Pg.217]

Even though form amide was synthesized as early as 1863 by W. A. Hoffmann from ethyl formate [109-94-4] and ammonia, it only became accessible on a large scale, and thus iadustrially important, after development of high pressure production technology. In the 1990s, form amide is mainly manufactured either by direct synthesis from carbon monoxide and ammonia, or more importandy ia a two-stage process by reaction of methyl formate (from carbon monoxide and methanol) with ammonia. [Pg.507]

Early in the twentieth century, the first attempts to manufacture formamide directiy from ammonia and carbon monoxide under high temperature and pressure encountered difficult technical problems and low yields (23). Only the introduction of alkaU alkoxides in alcohoHc solution, ie, the presence of alcoholate as a catalyst, led to the development of satisfactory large-scale formamide processes (24). [Pg.508]

Table 4 summarizes commercial and precommercial gas separation appHcations (86,87). The first large-scale commercial appHcation of gas separation was the separation of hydrogen from nitrogen ia ammonia purge gas streams. This process, launched ia 1980 by Monsanto, was followed by a number of similar appHcations, such as hydrogen—methane separation ia refinery off-gases and hydrogen—carbon monoxide adjustment ia oxo-chemical synthetic plants. [Pg.85]

Ma.nufa.cture. Nickel carbonyl can be prepared by the direct combination of carbon monoxide and metallic nickel (77). The presence of sulfur, the surface area, and the surface activity of the nickel affect the formation of nickel carbonyl (78). The thermodynamics of formation and reaction are documented (79). Two commercial processes are used for large-scale production (80). An atmospheric method, whereby carbon monoxide is passed over nickel sulfide and freshly reduced nickel metal, is used in the United Kingdom to produce pure nickel carbonyl (81). The second method, used in Canada, involves high pressure CO in the formation of iron and nickel carbonyls the two are separated by distillation (81). Very high pressure CO is required for the formation of cobalt carbonyl and a method has been described where the mixed carbonyls are scmbbed with ammonia or an amine and the cobalt is extracted as the ammine carbonyl (82). A discontinued commercial process in the United States involved the reaction of carbon monoxide with nickel sulfate solution. [Pg.12]

There are a considerable number of stable crystalline salts of the ammonium ion [14798-03-9] NH. Several are of commercial importance because of large scale consumption in fertiliser and industrial markets. The ammonium ion is about the same size as the potassium and mbidium ions, so these salts are often isomorphous and have similar solubiUty in water. Compounds in which the ammonium ion is combined with a large, uninegative anion are usually the most stable. Ammonium salts containing a small, highly charged anion generally dissociate easily into ammonia (qv) and the free acid (1). At about 300°C most simple ammonium salts volatilize with dissociation, for example... [Pg.362]

In early times hydrogen cyanide was manufactured from beet sugar residues and recovered from coke oven gas. These methods were replaced by the Castner process in which coke and ammonia were combined with Hquid sodium to form sodium cyanide. If hydrogen cyanide was desired, the sodium cyanide was contacted with an acid, usually sulfuric acid, to Hberate hydrogen cyanide gas, which was condensed for use. This process has since been supplanted by large-scale plants, using catalytic synthesis from ammonia and hydrocarbons. [Pg.375]

In the modified Raschlg process , used by Bayer A.G. and by Mobay Chem. Co. for large scale production of hydrazine, the intermediacy of an oxaziridine could be clearly evidenced (81MI50800). In this process ammonia and hypochlorite are reacted in the presence of acetone to form ketazine (302). Nitrogen-nitrogen bond formation is faster by a factor of about 1000 in the presence of acetone than in its absence. Thus acetone does not merely trap hydrazine after formation, but participates in the N —N bond forming reaction. Very fast formation of oxaziridine (301), which is isolable, is followed by its likewise fast reaction with ammonia. [Pg.235]

Preparation. The mother liquors from strychnine manufacture are concentrated and the alkaloids precipitated as neutral oxalates. The precipitate is dried and extracted with dry alcohol in which the strychnine salt is the more soluble. The less soluble salt dissolved in water is decolorised with charcoal, the alkaloid regenerated with ammonia and purified by crystallisation as the sulphate. According to Saunders, pure brucine may be obtained by slow crystallisation from a solution of the pure hydrochloride in alcoholic ammonia. A method of separation depending on the greater solubility in water of strychnine hydriodide was employed by Shenstone, whilst others have made use of the sparing solubility of strychnine chromate for the removal of small quantities of this alkaloid from brucine. For a large scale process see Schwyzer. ... [Pg.556]

F. Haber s catalytic synthesis of NH3 developed in collaboration with C. Bosch into a large-scale industrial process by 1913. (Hater was awarded the 1918 Nobel Prize in Chemistry for the synthesis of ammonia from its elements Bosch shared the 1931 Nobel Prize for contributions to the invention and development of chemical high-pressure methods , the Hater synthesis of NH3 being the first high-pressure industrial process.)... [Pg.408]

In parallel with these studies, developments were underway to find the most economical method of large-scale culture and down-stream processing. The biochemistry of methanol and ammonia utilisation by MethylopHlus methylotrophus was also studied to pinpoint possibilities for manipulation. [Pg.92]

Steam reforming was developed in Germany at the beginning of the 20th century, to produce hydrogen for ammonia synthesis, and was further introduced in the 1930s when natural gas and other hydrocarbon feedstocks such as naphtha became available on a large scale. [Pg.302]

The development of ammonia synthesis represents a landmark in chemical engineering, as it was the start of large-scale, continuous high-pressure operation in flow reactors, and in catalysis, because the numerous tests of Mittasch provided a systematic overview of the catalytic activity of many substances. [Pg.327]

From a fundamental point of view, it would be very interesting to find a way to achieve an electrochemical reduction of another very inert compound—the reduction of molecular nitrogen to ammonia—a reaction that is analogous to the well-known large-scale industrial process of ammonia production. Some papers on... [Pg.294]

Another examination involves a synthesis of thienobenzazepines based on the formation of key intermediate 6 prepared according to the method of McDowell and Wisowaty (Scheme 6.2). ° Selective reduction of this intermediate using zinc dust in 28-30% ammonia solution afforded the benzoic acid 7, which upon subsequent Curtius rearrangement and aluminum trichloride-mediated cyclization furnished the oxo-azepine 8. While this synthetic approach gave the tricycle in a few synthetic transformations, many of the same concerns as above exist when considering large scale preparation of 8 the use of large amounts of zinc, sodium azide, and aluminum trichloride. [Pg.65]


See other pages where Ammonia large-scale is mentioned: [Pg.312]    [Pg.2698]    [Pg.87]    [Pg.180]    [Pg.400]    [Pg.54]    [Pg.73]    [Pg.79]    [Pg.355]    [Pg.335]    [Pg.339]    [Pg.344]    [Pg.350]    [Pg.266]    [Pg.389]    [Pg.198]    [Pg.6]    [Pg.6]    [Pg.93]    [Pg.141]    [Pg.2320]    [Pg.1120]    [Pg.39]    [Pg.71]    [Pg.263]    [Pg.121]    [Pg.452]    [Pg.275]    [Pg.144]    [Pg.324]    [Pg.17]    [Pg.212]    [Pg.301]    [Pg.377]   
See also in sourсe #XX -- [ Pg.175 , Pg.189 , Pg.190 ]




SEARCH



Ammonia scale

Large scale reactions ammonia synthesis

© 2024 chempedia.info