Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino-enzyme intermediate

FIGURE 16.26 Acyl-enzyme and amino-enzyme intermediates originally proposed for aspartic proteases were modeled after the acyl-enzyme intermediate of the serine proteases. [Pg.521]

The mechanism of the aspartic proteinases involves two essential catalytic aspartate residues. There is some controversy in the literature as to whether the mechanism involves an acyl en me intermediate or an amino enzyme intermediate (4). However, there is no direct evidence for either intermediate so additional studies with inhibitors and pseudosubstrates along with crystallographic analysis will ultimately be required to resolve these questions. [Pg.64]

Porcine pepsin is known to have two types of activities in acidic solution the catalysis of peptide bond hydrolysis and the catalysis of transpeptidation (1). The presence of amino-enzyme intermediates in the catalytic action of pepsin has been proposed by Knowles (2-4) and Antonov (5). On the other hand. Silver... [Pg.159]

M. S. Silver, Amherst College, Amherst, Massachusetts, "Do Pepsin-Catalyzed Hydrolyses Ever Give Rise to Amino-Enzyme Intermediates ". [Pg.343]

It is interesting to note that serine peptidases can, under special conditions in vitro, catalyze the reverse reaction, namely the formation of a peptide bond (Fig. 3.4). The overall mechanism of peptide-bond synthesis by peptidases is represented by the reverse sequence f-a in Fig. 3.3. The nucleophilic amino group of an amino acid residue competes with H20 and reacts with the acyl-enzyme intermediate to form a new peptide bond (Steps d-c in Fig. 3.3). This mechanism is not relevant to the in vivo biosynthesis of proteins but has proved useful for preparative peptide synthesis in vitro [17]. An interesting application of the peptidase-catalyzed peptide synthesis is the enzymatic conversion of porcine insulin to human insulin [18][19]. [Pg.69]

Lactamases (EC 3.5.2.6) inactivate /3-lactam antibiotics by hydrolyzing the amide bond (Fig. 5.1, Pathway b). These enzymes are the most important ones in the bacterial defense against /3-lactam antibiotics [15]. On the basis of catalytic mechanism, /3-lactamases can be subdivided into two major groups, namely Zn2+-containing metalloproteins (class B), and active-serine enzymes, which are subdivided into classes A, C, and D based on their amino acid sequences (see Chapt. 2). The metallo-enzymes are produced by only a relatively small number of pathogenic strains, but represent a potential threat for the future. Indeed, they are able to hydrolyze efficiently carbape-nems, which generally escape the activity of the more common serine-/3-lac-tamases [16] [17]. At present, however, most of the resistance of bacteria to /3-lactam antibiotics is due to the activity of serine-/3-lactamases. These enzymes hydrolyze the /3-lactam moiety via an acyl-enzyme intermediate similar to that formed by transpeptidases. The difference in the catalytic pathways of the two enzymes is merely quantitative (Fig. 5.1, Pathways a and b). [Pg.189]

An enzyme reaction intermediate (Enz—O—C(0)R or Enz—S—C(O)R), formed by a carboxyl group transfer (e.g., from a peptide bond or ester) to a hydroxyl or thiol group of an active-site amino acyl residue of the enzyme. Such intermediates are formed in reactions catalyzed by serine proteases transglutaminase, and formylglyci-namide ribonucleotide amidotransferase . Acyl-enzyme intermediates often can be isolated at low temperatures, low pH, or a combination of both. For acyl-seryl derivatives, deacylation at a pH value of 2 is about 10 -fold slower than at the optimal pH. A primary isotope effect can frequently be observed with a C-labeled substrate. If an amide substrate is used, it is possible that a secondary isotope effect may be observed as welF. See also Active Site Titration Serpins (Inhibitory Mechanism)... [Pg.29]

In addition to participating in acid-base catalysis, some amino acid side chains may enter into covalent bond formation with substrate molecules, a phenomenon that is often referred to as covalent catalysis.174 When basic groups participate this may be called nucleophilic catalysis. Covalent catalysis occurs frequently with enzymes catalyzing nucleophilic displacement reactions and examples will be considered in Chapter 12. They include the formation of an acyl-enzyme intermediate by chymotrypsin (Fig. 12-11). Several of the coenzymes discussed in Chapters 14 and 15 also participate in covalent catalysis. These coenzymes combine with substrates to form reactive intermediate compounds whose structures allow them to be converted rapidly to the final products. [Pg.494]

The examples discussed above constitute a selection of recent applications of the acid and basic hydrolysis of (3-lactams in synthesis. Hydrolysis and alcoholysis of (3-lactams can also be effected under roughly neutral reaction conditions when enzymes are the promoters [47]. The (3-lactamases catalyzed hydrolysis of (3-lactams is an efficient process for a broad spectrum of substrates, including those (3-lactams with base or acid sensitive groups [12-14]. This process proceeds through an acyl enzyme intermediate to give ring opened (3-amino acids. The class C (3-lactamases in particular, in Scheme 9, have the ability to catalyze the alcoholysis reaction and hence (3-amino esters are the products formed. [Pg.219]

Affinities between NOSs and BH4 are stronger than those between aromatic amino acid hydroxylases and BH4, so the purified NOS from animal tissues still contain 0.2-0.5 BH4 molecules per heme moiety [128]. BH4 tightly binds to endothelial and neural NOSs with dissociation constants in the nanomolar range, and this binding is reported to stabilize the dimeric structure of NOS [129-131], whereas aromatic amino acid hydroxylases do not have BH4 in the proteins. BH4 functions as a one electron donor to a heme-dioxy enzyme intermediate. The BH4 radical remains bound in NOS and is subsequently reduced back to BH4 by an electron provided by the NOS reductase domain [128]. [Pg.160]

The synthetase consists of the three modules E1, E2, and E3 (for a complete description, see Sec. II. A). Each module is composed of an activation site forming the acyl or aminoacyl adenylate, a carrier domain which is posttranslationally modified with 4 -phosphopantetheine (Sp), and a condensation domain (Cl, C2) or, alternatively, a structurally similar epimerization domain (Ep). Activation of aminoadipate (Aad) leads to an acylated enzyme intermediate, in which Aad is attached to the terminal cysteamine of the cofactor (El-Spl-Aad) [reactions (1) and (2)]. Likewise, activation of cysteine (Cys) leads to cysteinylated module 2 [reactions (3) and (4)]. For the condensation reaction to occur between aminoadipate as donor and cysteine as acceptor, both intermediates are thought to react at the condensation site of module 1 (Cl). Each condensation site is composed, in analogy to ribosomal peptide formation, of an aminoacyl and a peptidyl site. In this case of initiation, the thioester of Aad enters the P-site, while the thioester of Cys enters the A-site. Condensation occurs and leaves the dipeptidyl intermediate Aad-Cys at the carrier protein of the second module [reaction (5)]. The third amino acid valine is activated on module 3, and Val is attached to the carrier protein 3 [reactions (6) and (7)]. Formation of the tripeptide occurs at the second condensation site C2, with the dipeptidyl intermediate entering the P-site and the valiny 1-intermediate the A-site [reaction (8)]. [Pg.13]

With regard to the use of protease in the synthetic mode, the reaction can be carried out using a kinetic or thermodynamic approach. The kinetic approach requires a serine or cysteine protease that forms an acyl-enzyme intermediate, such as trypsin (E.C. 3.4.21.4), a-chymotrypsin (E.C. 3.4.21.1), subtilisin (E.C. 3.4.21.62), or papain (E.C. 3.4.22.2), and the amino donor substrate must be activated as the ester (Scheme 19.27) or amide (not shown). Here the nucleophile R3-NH2 competes with water to form the peptide bond. Besides amines, other nucleophiles such as alcohols or thiols can be used to compete with water to form new esters or thioesters. Reaction conditions such as pH, temperature, and organic solvent modifiers are manipulated to maximize synthesis. Examples of this approach using carboxypeptidase Y (E.C. 3.4.16.5) from baker s yeast have been described.219... [Pg.377]

Recently a simplified process was developed for incorporating l-methionine directly into soy proteins during the papain-catalyzed hydrolysis (21). The covalent attachment of the amino acid requires a very high concentration of protein and occurs through the formation of an acyl-enzyme intermediate and its subsequent aminolysis by the methionine ester added in the medium. From a practical point of view, the main advantage of enzymatic incorporation of amino acids into food proteins, in comparison with chemical methods, probably lies in the fact that racemic amino acid esters such as D,L-methionine ethyl ester can be used since just the L-form of the racemate is used by the stereospecific proteases. On the other hand, papain-catalyzed polymerization of L-methio-nine, which may occur at low protein concentration (39), will result in a loss of methionine because of the formation of insoluble polyamino acid chains greater than 7 units long. [Pg.153]

The attachment of an amino acid to an appropriate tRNA is accomplished via aminoacyl-tRNA synthetase and the hydrolysis of ATP. There is a separate enzyme specific for each amino acid, and it will recognize all tRNAs for that amino acid. The reaction proceeds in two steps and requires Mg2+ (Fig. 17-8). The first step, amino acid activation, results in the formation of an aminoacyl-AMP-enzyme intermediate. In the second step, the aminoacyl group is transferred to its appropriate (cognate) tRNA, the amino acid being linked to tRNA through an ester bond. It appears that recognition between the synthetase and tRNA is achieved through very precise contact between the... [Pg.501]


See other pages where Amino-enzyme intermediate is mentioned: [Pg.520]    [Pg.230]    [Pg.137]    [Pg.159]    [Pg.174]    [Pg.520]    [Pg.230]    [Pg.137]    [Pg.159]    [Pg.174]    [Pg.46]    [Pg.296]    [Pg.53]    [Pg.80]    [Pg.117]    [Pg.238]    [Pg.542]    [Pg.77]    [Pg.523]    [Pg.164]    [Pg.183]    [Pg.296]    [Pg.150]    [Pg.278]    [Pg.840]    [Pg.840]    [Pg.296]    [Pg.1263]    [Pg.1264]    [Pg.172]    [Pg.443]    [Pg.302]    [Pg.221]    [Pg.140]    [Pg.100]    [Pg.70]    [Pg.242]    [Pg.58]    [Pg.153]    [Pg.166]    [Pg.655]   
See also in sourсe #XX -- [ Pg.5 , Pg.8 , Pg.10 , Pg.11 ]




SEARCH



Amino intermediate

© 2024 chempedia.info