Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino acids heating

It was mentioned in the beginning that azlactones and oxazinones are activated amino acid derivatives. In the KR discussed here, the remaining oxazinone enantiomer can be reacted further, in the crude reaction mixture, with nucleophiles. For example, treatment with resin-bound and N-terminally nonprotected peptides results in coupling with a P-amino acid. Heating of the homogeneous crude reaction mixture (typically toluene as solvent) with dilute aqueous hydrochloric acid results in hydrolysis of the unreacted oxazinone enantiomer and precipitation of the corresponding N-acyl P-amino acid. The latter can be isolated in excellent enantiomeric purity by simple filtration. The filtrate contains the P-amino acid ester of opposite configuration (Berkessel et al. 2005). [Pg.293]

Thus, 1-aminothiohydantoins (223) can be made in good yields by reaction of ethyl 2-hydra-zinoacetate with a suitable alkyl thiocyanate <92MI 302-02). Similarly, an a-amino acid, heated with a dithiocarbamic ester, gives a thiohydantoin. An adaptation of this is a one-pot procedure from amino acid, amine, carbon disulfide and base without isolating the dithiocarbamic ester (Scheme 156) <835391 >. [Pg.202]

Azomethinium salts are highly versatile intermediates since they present an extremely electrophilic carbon for nucleophilic attack. - E Startg. amino acid heated 2.5 min. at 100° in POCI3, and the resulting azomethinium salt warmed in hydrochloric acid -> 2,3-dimethoxy-5,8,13,13a-tetrahydro-6H-dibenzo[a,g]quino-lizine hydrochloride. Y 79%. F. e. s. R. T. Dean, H. C. Padgett, and H. Rapoport, Am. Soc. 98, 7448 (1976). [Pg.420]

Note that the amino-acids, because of their salt-like nature, usually decompose on heating, and therefore seldom have sharp melting-points. Furthermore, all naturally occurring amino-acids are a-amino-acids, and consequently, with the exception of glycine, can exist in optically active forms. [Pg.130]

Place 0-5 g. of the amino acid and 1 0 g. of phthalic anhdride in a Pyrex test-tube and immerse the lower part of the tube in an oil bath, which has previously been heated to 180-185°. Stir the mixture occasionally during the first 10 minutes and push down the phthalic anhydride which sublimes on the walls into the reaction mixture with a glass rod. Leave the mixture undisturbed for 5 minutes. After 15 minutes, remove the test-tube from the bath when the liquid mass solidifies, invert the test-tube and scrape out the excess of phthalic anhydride on the walls. RecrystaUise the residue from 10 per cent ethanol or from water. [Pg.438]

The melting points of the derivatives of a number of amino acids are collected in Table 111,132. Most a-amino acids decompose on heating so that the melting points would be more accurately described as decomposition points the latter vary somewhat with the rate of heating and the figures given are those obtained upon rapid heating. [Pg.438]

The modified procedure involves refluxing the N-substituted phthaUmide in alcohol with an equivalent quantity of hydrazine hydrate, followed by removal of the alcohol and heating the residue with hydrochloric acid on a steam bath the phthalyl hydtazide produced is filtered off, leaving the amine hydrochloride in solution. The Gabriel synthesis has been employed in the preparation of a wide variety of amino compounds, including aliphatic amines and amino acids it provides an unequivocal synthesis of a pure primary amine. [Pg.560]

The physical properties of a typical amino acid such as glycine suggest that it is a very polar substance much more polar than would be expected on the basis of its formula tion as H2NCH2CO2H Glycine is a crystalline solid it does not melt but on being heated It eventually decomposes at 233°C It is very soluble m water but practically insoluble m nonpolar organic solvents These properties are attributed to the fact that the stable form of glycine is a zwittenon, or inner salt... [Pg.1117]

When the sample is a solid, a separation of the analyte and interferent by sublimation may be possible. The sample is heated at a temperature and pressure below its triple point where the solid vaporizes without passing through the liquid state. The vapor is then condensed to recover the purified solid. A good example of the use of sublimation is in the isolation of amino acids from fossil mohusk shells and deep-sea sediments. ... [Pg.209]

Miscellaneous Reactions. Sodium bisulfite adds to acetaldehyde to form a white crystalline addition compound, insoluble in ethyl alcohol and ether. This bisulfite addition compound is frequendy used to isolate and purify acetaldehyde, which may be regenerated with dilute acid. Hydrocyanic acid adds to acetaldehyde in the presence of an alkaU catalyst to form cyanohydrin the cyanohydrin may also be prepared from sodium cyanide and the bisulfite addition compound. Acrylonittile [107-13-1] (qv) can be made from acetaldehyde and hydrocyanic acid by heating the cyanohydrin that is formed to 600—700°C (77). Alanine [302-72-7] can be prepared by the reaction of an ammonium salt and an alkaU metal cyanide with acetaldehyde this is a general method for the preparation of a-amino acids called the Strecker amino acids synthesis. Grignard reagents add readily to acetaldehyde, the final product being a secondary alcohol. Thioacetaldehyde [2765-04-0] is formed by reaction of acetaldehyde with hydrogen sulfide thioacetaldehyde polymerizes readily to the trimer. [Pg.51]

Inactivation and Removal of Viruses. In developing methods of plasma fractionation, the possibiHty of transmitting infection from human vimses present in the starting plasma pool has been recognized (4,5). Consequentiy, studies of product stabiHty encompass investigation of heat treatment of products in both solution (100) and dried (101) states to estabHsh vimcidal procedures that could be appHed to the final product. Salts of fatty acid anions, such as sodium caprylate [1984-06-17, and the acetyl derivative of the amino acid tryptophan, sodium acetyl-tryptophanate [87-32-17, are capable of stabilizing albumin solutions to 60°C for 10 hours (100) this procedure prevents the transmission of viral hepatitis (102,103). The degree of protein stabilization obtained (104) and the safety of the product in clinical practice have been confirmed (105,106). The procedure has also been shown to inactivate the human immunodeficiency vims (HIV) (107). [Pg.530]

Hydrolysis. Although hydantoins can be hydroly2ed under strongly acidic conditions, the most common method consists of heating ia an alkaline medium to give iatermediate ureido acids (the so-called hydantoic acids), which are finally hydroly2ed to a-amino acids. [Pg.252]

The hide proteins differ in amino acid composition and physical stmcture. The principal amino acids (qv) of the hide proteins are hsted in Table 1. Of particular importance is the difference in the water solubiUty of the proteins. AH of the proteins are soluble in water when heated, and upon the addition of either strong acids or bases. Proteins (qv) are amphoteric, possessing both acid and base binding capacity. [Pg.81]

Casein. Milk contains proteins and essential amino acids lacking in many other foods. Casein is the principal protein in the skimmed milk (nonfat) portion of milk (3—4% of the weight). After it is removed from the Hquid portion of milk, whey remains. Whey can be denatured by heat treatment of 85°C for 15 minutes. Various protein fractions are identified as a-, P-, and y-casein, and 5-lactoglobulin and blood—semm albumin, each having specific characteristics for various uses. Table 21 gives the concentration and composition of milk proteins. [Pg.370]

The dielectric constants of amino acid solutions are very high. Thek ionic dipolar structures confer special vibrational spectra (Raman, k), as well as characteristic properties (specific volumes, specific heats, electrostriction) (34). [Pg.274]

MaillardReaction (Nonenzymatic Glycation), Browned reaction products ate formed by heating amino acid and simple sugar. This reaction is important in food science relating to coloring, taste, and flavor enhancement (79), and is iUustrated as follows ... [Pg.280]

Formation of Diketopiperazines. Esters of a-amino acids can be readily prepared by refluxing anhydrous alcoholic suspensions of a-amino acids saturated with dry HQ. Diketopiperazines are formed by heating the alcohohc solution of the a-amino acid ester. [Pg.281]

Pea.nuts, The proteins of peanuts are low in lysine, threonine, cystine plus methionine, and tryptophan when compared to the amino acid requirements for children but meet the requirements for adults (see Table 3). Peanut flour can be used to increase the nutritive value of cereals such as cornmeal but further improvement is noted by the addition of lysine (71). The trypsin inhibitor content of raw peanuts is about one-fifth that of raw soybeans, but this concentration is sufficient to cause hypertrophy (enlargement) of the pancreas in rats. The inhibitors of peanuts are largely inactivated by moist heat treatment (48). As for cottonseed, peanuts are prone to contamination by aflatoxin. FDA regulations limit aflatoxin levels of peanuts and meals to 100 ppb for breeding beef catde, breeding swine, or poultry 200 ppb for finishing swine 300 ppb for finishing beef catde 20 ppb for immature animals and dairy animals and 20 ppb for humans. [Pg.301]

Sundower Seed. Compared to the FAO/WHO/UNU recommendations for essential amino acids, sunflower proteins are low in lysine, leucine, and threonine for 2 to 5-year-olds but meet all the requirements for adults (see Table 3). There are no principal antinutritional factors known to exist in raw sunflower seed (35). However, moist heat treatment increases the growth rate of rats, thereby suggesting the presence of heat-sensitive material responsible for growth inhibitions in raw meal (72). Oxidation of chlorogenic acid may involve reaction with the S-amino group of lysine, thus further reducing the amount of available lysine. [Pg.301]

Some substituted alkyl hydrogen sulfates are readily prepared. Eor example, 2-chloroethyl hydrogen sulfate [36168-93-1] is obtained by treating ethylene chlorohydrin with sulfuhc acid or amidosulfuhc acid. Heating hydroxy sulfates of amino alcohols produces the corresponding sulfuhc monoester... [Pg.200]

Reactions with OC-Amino Acids. On heating two moles of an a-amino acid, such as alanine, in the presence of a tetraalkyl titanate and an alcohol, reaction that gives a 2,5-pipetazineclione and an oxytitanate occurs (36). [Pg.142]

Other chemicals of possible concern for health and safety found ia yeast proteias iaclude tyramiae (0—2.25 mg/g) and histamine (0.2—2.8 mg/g), formed by decarboxylation of the corresponding amino acids (38). These compounds are also found ia other fermeated (including pickled) foods. Their preseace ia yeast extracts used as condiments coatributes very Htde to human iatake. Likewise, the nephrotoxic compouad lysiaoalaniae has beea ideatified ia alkah-treated yeast extracts, at a level of 0.12 mg/g. However, the chemical occurs at similar low coaceatratioas ia almost all heat- and alkaU-treated foods. [Pg.394]

The natural moisture of the cocoa bean combined with the heat of roasting cause many chemical reactions other than flavor changes. Some of these reactions remove unpleasant volatile acids and astringent compounds, partially break down sugars, modify tannins and other nonvolatile compounds with a reduction in bitterness, and convert proteins to amino acids that react with sugars to form flavor compounds, particularly pyrazines (4). To date, over 300 different compounds, many of them formed during roasting, have been identified in the chocolate flavor (5). [Pg.91]

Hydroxyl Group. The OH group of cyanohydrins is subject to displacement with other electronegative groups. Cyanohydrins react with ammonia to yield amino nitriles. This is a step in the Strecker synthesis of amino acids. A one-step synthesis of a-amino acids involves treatment of cyanohydrins with ammonia and ammonium carbonate under pressure. Thus acetone cyanohydrin, when heated at 160°C with ammonia and ammonium carbonate for 6 h, gives a-aminoisobutyric acid [62-57-7] in 86% yield (7). Primary and secondary amines can also be used to displace the hydroxyl group to obtain A/-substituted and Ai,A/-disubstituted a-amino nitriles. The Strecker synthesis can also be appHed to aromatic ketones. Similarly, hydrazine reacts with two molecules of cyanohydrin to give the disubstituted hydrazine. [Pg.411]

Soybean Protein Isolates. Soybean protein isolates, having a protein content of >90 wt%, are the only vegetable proteins that are widely used in imitation dairy products (1). Most isolates are derived from isoelectric precipitation, so that the soybean protein isolates have properties that are similar to those of casein. They are insoluble at thek isoelectric point, have a relatively high proportion of hydrophobic amino acid residues, and are calcium-sensitive. They differ from casein in that they are heat-denaturable and thus heat-labile. The proteins have relatively good nutritional properties and have been increasingly used as a principal source of protein. A main deterrent to use has been the beany flavor associated with the product. Use is expected to increase in part because of lower cost as compared to caseinates. There has been much research to develop improved soybean protein isolates. [Pg.442]


See other pages where Amino acids heating is mentioned: [Pg.188]    [Pg.431]    [Pg.105]    [Pg.176]    [Pg.188]    [Pg.431]    [Pg.105]    [Pg.176]    [Pg.191]    [Pg.226]    [Pg.233]    [Pg.122]    [Pg.435]    [Pg.604]    [Pg.102]    [Pg.150]    [Pg.18]    [Pg.460]    [Pg.532]    [Pg.409]    [Pg.277]    [Pg.224]    [Pg.303]    [Pg.301]    [Pg.27]    [Pg.372]    [Pg.341]    [Pg.65]    [Pg.121]    [Pg.193]   
See also in sourсe #XX -- [ Pg.387 , Pg.389 , Pg.390 ]




SEARCH



© 2024 chempedia.info