Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation reactions amines

The synthesis pathway of quinolizidine alkaloids is based on lysine conversion by enzymatic activity to cadaverine in exactly the same way as in the case of piperidine alkaloids. Certainly, in the relatively rich literature which attempts to explain quinolizidine alkaloid synthesis °, there are different experimental variants of this conversion. According to new experimental data, the conversion is achieved by coenzyme PLP (pyridoxal phosphate) activity, when the lysine is CO2 reduced. From cadeverine, via the activity of the diamine oxidase, Schiff base formation and four minor reactions (Aldol-type reaction, hydrolysis of imine to aldehyde/amine, oxidative reaction and again Schiff base formation), the pathway is divided into two directions. The subway synthesizes (—)-lupinine by two reductive steps, and the main synthesis stream goes via the Schiff base formation and coupling to the compound substrate, from which again the synthetic pathway divides to form (+)-lupanine synthesis and (—)-sparteine synthesis. From (—)-sparteine, the route by conversion to (+)-cytisine synthesis is open (Figure 51). Cytisine is an alkaloid with the pyridone nucleus. [Pg.89]

The a-aminoalkyl radicals as well as iminium ions generated as intermediates in electron-transfer reactions of amines can be used for bringing about synthetically useful transformations of amines. The synthetic applications of amine oxidation reactions brought about by thermal, electrochemical and photochemical methods as discussed below. [Pg.1076]

Typical nucleophiles known to react with coordinated alkenes are water, alcohols, carboxylic acids, ammonia, amines, enamines, and active methylene compounds 11.12]. The intramolecular version is particularly useful for syntheses of various heterocyclic compounds[l 3,14]. CO and aromatics also react with alkenes. The oxidation reactions of alkenes can be classified further based on these attacking species. Under certain conditions, especially in the presence of bases, the rr-alkene complex 4 is converted into the 7r-allylic complex 5. Various stoichiometric reactions of alkenes via 7r-allylic complex 5 are treated in Section 4. [Pg.21]

Oxidation of LLDPE starts at temperatures above 150°C. This reaction produces hydroxyl and carboxyl groups in polymer molecules as well as low molecular weight compounds such as water, aldehydes, ketones, and alcohols. Oxidation reactions can occur during LLDPE pelletization and processing to protect molten resins from oxygen attack during these operations, antioxidants (radical inhibitors) must be used. These antioxidants (qv) are added to LLDPE resins in concentrations of 0.1—0.5 wt %, and maybe naphthyl amines or phenylenediamines, substituted phenols, quinones, and alkyl phosphites (4), although inhibitors based on hindered phenols are preferred. [Pg.395]

The zwitterion (6) can react with protic solvents to produce a variety of products. Reaction with water yields a transient hydroperoxy alcohol (10) that can dehydrate to a carboxyUc acid or spHt out H2O2 to form a carbonyl compound (aldehyde or ketone, R2CO). In alcohoHc media, the product is an isolable hydroperoxy ether (11) that can be hydrolyzed or reduced (with (CH O) or (CH2)2S) to a carbonyl compound. Reductive amination of (11) over Raney nickel produces amides and amines (64). Reaction of the zwitterion with a carboxyUc acid to form a hydroperoxy ester (12) is commercially important because it can be oxidized to other acids, RCOOH and R COOH. Reaction of zwitterion with HCN produces a-hydroxy nitriles that can be hydrolyzed to a-hydroxy carboxyUc acids. Carboxylates are obtained with H2O2/OH (65). The zwitterion can be reduced during the course of the reaction by tetracyanoethylene to produce its epoxide (66). [Pg.494]

Elimination. Ahphatic amine oxides having an ahphatic hydrogen P to the nitrogen form olefins and diaLkyl hydroxylamines when heated. This reaction is known as the Cope elimination (17)... [Pg.190]

In the pyrolysis of pure amine oxides, temperature has a significant effect on the ratio of products obtained (22). The principal reaction during thermal decomposition of /V,/V-dimetby11 amyl amine oxide [1643-20-5] at 80—100°C is deoxygenation to /V,/V-dimetby11 amyl amine [112-18-5] (lauryl = dodecyl). [Pg.190]

However, when the temperature is increased to 120°C, the principal reaction is the elimination to olefin. The thermal decomposition of dimethyl dodecyl amine oxide at 125°C in a sealed system, as opposed to a vacuum used by Cope and others, produces 2-methyl-5-decyhsoxa2ohdine, dimethyl dodecyl amine, and olefin (23). The amine oxide oxidi2es XW-diaLkylhydroxylainine to the nitrone during the pyrolysis and is reduced to a tertiary amine in the process. [Pg.190]

Metal Catalysis. Aqueous solutions of amine oxides are unstable in the presence of mild steel and thermal decomposition to secondary amines and aldehydes under acidic conditions occurs (24,25). The reaction proceeds by a free-radical mechanism (26). The decomposition is also cataly2ed by V(III) and Cu(I). [Pg.190]

Reduction. Just as aromatic amine oxides are resistant to the foregoing decomposition reactions, they are more resistant than ahphatic amine oxides to reduction. Ahphatic amine oxides are readily reduced to tertiary amines by sulfurous acid at room temperature in contrast, few aromatic amine oxides can be reduced under these conditions. The ahphatic amine oxides can also be reduced by catalytic hydrogenation (27), with 2inc in acid, or with staimous chloride (28). For the aromatic amine oxides, catalytic hydrogenation with Raney nickel is a fairly general means of deoxygenation (29). Iron in acetic acid (30), phosphoms trichloride (31), and titanium trichloride (32) are also widely used systems for deoxygenation of aromatic amine oxides. [Pg.190]

Acylation. Aliphatic amine oxides react with acylating agents such as acetic anhydride and acetyl chloride to form either A[,A/-diaLkylamides and aldehyde (34), the Polonovski reaction, or an ester, depending upon the polarity of the solvent used (35,36). Along with a polar mechanism (37), a metal-complex-induced mechanism involving a free-radical intermediate has been proposed. [Pg.191]

Organic Reagents. Amine oxides are used ia synthetic organic chemistry ia the preparation of olefins, or phase-transfer catalysts (47), ia alkoxylation reactions (48), ia polymerization, and as oxidizing agents (49,50). [Pg.192]

Analytical methods iaclude thin-layer chromatography (69), gas chromatography (70), and specific methods for determining amine oxides ia detergeats (71) and foods (72). Nuclear magnetic resonance (73—75) and mass spectrometry (76) have also been used. A frequentiy used procedure for iadustrial amine oxides (77) iavolves titratioa with hydrochloric acid before and after conversion of the amine to the quaternary ammonium salt by reaction with methyl iodide. A simple, rapid quaHty control procedure has been developed for the deterrniaation of amine oxide and unreacted tertiary amine (78). [Pg.192]

Oxidation by Hydrogen Peroxide. This reaction produces amine oxides (qv) (1,7,33,34,36). [Pg.219]

Eatty amine oxides are most frequendy prepared from alkyldimethylarnines by reaction with hydrogen peroxide. Aqueous 2-propanol is used as solvent to prepare amine oxides at concentrations of 50—60%. With water only as a solvent, amine oxides can only be prepared at lower concentrations because aqueous solutions are very viscous. Eatty amine oxides are weak cationic surfactants. [Pg.219]

Oxidation. Aromatic amines can undergo a variety of oxidation reactions, depending on the oxidizing agent and the reaction conditions. For example, oxidation of aniline can lead to formation of phenyUiydroxylamine, nitrosobenzene, nitrobenzene, azobenzene, azoxybenzene or -benzoquinone. Oxidation was of great importance in the early stages of the development of aniline and the manufacture of synthetic dyes, such as aniline black and Perkin s mauve. [Pg.230]

Similarly, carbon disulfide and propylene oxide reactions are cataly2ed by magnesium oxide to yield episulftdes (54), and by derivatives of diethyUiac to yield low molecular weight copolymers (55). Use of tertiary amines as catalysts under pressure produces propylene trithiocarbonate (56). [Pg.135]

The N-oxide function has proved useful for the activation of the pyridine ring, directed toward both nucleophilic and electrophilic attack (see Amine oxides). However, pyridine N-oxides have not been used widely ia iadustrial practice, because reactions involving them almost iavariably produce at least some isomeric by-products, a dding to the cost of purification of the desired isomer. Frequently, attack takes place first at the O-substituent, with subsequent rearrangement iato the ring. For example, 3-picoline N-oxide [1003-73-2] (40) reacts with acetic anhydride to give a mixture of pyridone products ia equal amounts, 5-methyl-2-pyridone [1003-68-5] and 3-methyl-2-pyridone [1003-56-1] (11). [Pg.328]

Stability. In order to have maximum effectiveness over long periods of time, an antioxidant should be stable upon exposure to heat, light, oxygen, water, etc. Many antioxidants, especially in the presence of an impurity when exposed to light and oxygen, are subject to oxidation reactions with the development of colored species. Alkylated diphenyl amines are least susceptible and the -phenylenediamine derivatives the most susceptible to direct oxidation. [Pg.246]

Water-dispersible resins contain carboxyhc groups which are neutralized using base or amine compounds. This solubilizes the resin in solution and also promotes pigment wetting. Film formation occurs by the evaporation of volatiles foUowed by cross-linking through ambient cure oxidative reactions or elevated temperature reactions. Solvents, most commonly glycol ethers, are used to promote film formation and improve film quahty. [Pg.279]

The hterature suggests that more than one mechanism may be operative for a given antiozonant, and that different mechanisms may be appHcable to different types of antiozonants. All of the evidence, however, indicates that the scavenger mechanism is the most important. All antiozonants react with ozone at a much higher rate than does the mbber which they protect. The extremely high reactivity with ozone of/)-phenylenediamines, compared to other amines, is best explained by their unique abiUty to react ftee-tadicaHy. The chemistry of ozone—/)-PDA reactions is known in some detail (30,31). The first step is beheved to be the formation of an ozone—/)-PDA adduct (32), or in some cases a radical ion. Pour competing fates for dissociation of the initial adduct have been described amine oxide formation, side-chain oxidation, nitroxide radical formation, and amino radical formation. [Pg.237]

Reactivities of several chlorinated solvents, including chloroform, with aluminum, iron, and 2inc in both dry and wet systems have been deterrnined, as have chemical reactivities in oxidation reactions and in reactions with amines (11). Unstabilized wet chloroform reacts completely with aluminum and attacks zinc at a rate of >250 //m/yr and iron at <250 //m/yr. The dry, uiiinhibited solvent attacks aluminum and zinc at a rate of 250 )J.m/yr and iron at 25 ]lni / yr. [Pg.525]

Alkylaziridines can be stereospecifically deaminated to alkenes by reaction with m-chioroperbenzoic acid (70AG(E)374). The reaction and work-up are carried out in the dark to avoid isomerization of the cw-alkene, and the mechanism is thought to involve an initial oxidation to an amine oxide followed by a concerted elimination. Aziridine oxides have been generated by treating aziridines with ozone at low temperatures (71JA4082). Two... [Pg.74]

Purine, 6-bromo-9-/3-D-(2,3,5-tri-0-acetyl)ribofuranosyl-synthesis, 5, 598 Purine, 6-carboxy-reactions, 5, 549 Purine, 8-carboxy-reactions, 5, 549 Purine, 2-chloro-reactions, 5, 561 synthesis, 5, 597 Purine, 6-chloro-alkylation, 5, 529 glycosylation, 5, 529 oxidation, 5, 539 3-oxides reactions, 5, 554 synthesis, 5, 595 reactions, 5, 561, 595 with ammonia, 5, 562 with fluorides, 5, 563 with trimethylamine, 5, 562 9- -D-ribofuranoside synthesis, 5, 560 synthesis, 5, 597, 598 Purine, 8-chloro-amination, 5, 542 Purine, 6-chloro-8-ethoxy-synthesis, 5, 591 Purine, 6-chloro-9-ethyl-dipole moment, 5, 522 Purine, 6-chloro-2-fluoro-riboside... [Pg.758]

Enby 6 is an example of a stereospecific elimination reaction of an alkyl halide in which the transition state requires die proton and bromide ion that are lost to be in an anti orientation with respect to each odier. The diastereomeric threo- and e/ytAra-l-bromo-1,2-diphenyl-propanes undergo )3-elimination to produce stereoisomeric products. Enby 7 is an example of a pyrolytic elimination requiring a syn orientation of die proton that is removed and the nitrogen atom of the amine oxide group. The elimination proceeds through a cyclic transition state in which the proton is transferred to die oxygen of die amine oxide group. [Pg.100]


See other pages where Oxidation reactions amines is mentioned: [Pg.1049]    [Pg.284]    [Pg.139]    [Pg.275]    [Pg.282]    [Pg.129]    [Pg.5]    [Pg.234]    [Pg.234]    [Pg.360]    [Pg.169]    [Pg.1049]    [Pg.284]    [Pg.139]    [Pg.275]    [Pg.282]    [Pg.129]    [Pg.5]    [Pg.234]    [Pg.234]    [Pg.360]    [Pg.169]    [Pg.42]    [Pg.347]    [Pg.193]    [Pg.241]    [Pg.119]    [Pg.73]    [Pg.218]    [Pg.311]    [Pg.337]    [Pg.150]    [Pg.23]    [Pg.47]    [Pg.37]    [Pg.364]    [Pg.435]   


SEARCH



Amines oxidative reactions

Oxidative amination reactions

© 2024 chempedia.info