Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amines large-scale

Ma.nufa.cture. Nickel carbonyl can be prepared by the direct combination of carbon monoxide and metallic nickel (77). The presence of sulfur, the surface area, and the surface activity of the nickel affect the formation of nickel carbonyl (78). The thermodynamics of formation and reaction are documented (79). Two commercial processes are used for large-scale production (80). An atmospheric method, whereby carbon monoxide is passed over nickel sulfide and freshly reduced nickel metal, is used in the United Kingdom to produce pure nickel carbonyl (81). The second method, used in Canada, involves high pressure CO in the formation of iron and nickel carbonyls the two are separated by distillation (81). Very high pressure CO is required for the formation of cobalt carbonyl and a method has been described where the mixed carbonyls are scmbbed with ammonia or an amine and the cobalt is extracted as the ammine carbonyl (82). A discontinued commercial process in the United States involved the reaction of carbon monoxide with nickel sulfate solution. [Pg.12]

Catalytic hydtogenation is the most efficient method for the large scale manufacture of many aromatic and ahphatic amines. Some of the commercially important amines produced by catalytic hydrogenation include aniline (from nitrobenzene), 1,6-hexanediamine (from adiponitrile), isophoronediamine (from 3-nitro-l,5,5-trimethylcyclohexanecarbonitrile), phenylenediamine (from dinitrobenzene), toluenediamine (from dinitrotoluene), toluidine (from nitrotoluene), and xyhdine (from nitroxylene). As these examples suggest, aromatic amines ate usually made by hydrogenating the... [Pg.257]

However, this method is appHed only when esterification cannot be effected by the usual acid—alcohol reaction because of the higher cost of the anhydrides. The production of cellulose acetate (see Fibers, cellulose esters), phenyl acetate (used in acetaminophen production), and aspirin (acetylsahcyhc acid) (see Salicylic acid) are examples of the large-scale use of acetic anhydride. The speed of acylation is greatiy increased by the use of catalysts (68) such as sulfuric acid, perchloric acid, trifluoroacetic acid, phosphoms pentoxide, 2inc chloride, ferric chloride, sodium acetate, and tertiary amines, eg, 4-dimethylaminopyridine. [Pg.380]

Most ion exchangers in large-scale use are based on synthetic resins—either preformed and then chemically reacted, as for polystyrene, or formed from active monomers (olefinic acids, amines, or phenols). Natural zeolites were the first ion exchangers, and both natural and synthetic zeolites are in use today. [Pg.1496]

Important applications for titanium have been developed in processes involving acetic acid, malic acid, amines, urea, terephthalic acid, vinyl acetate, and ethylene dichloride. Some of these represent large scale use of the material in the form of pipework, heat exchangers, pumps, valves, and vessels of solid, loose lined, or explosion clad construction. In many of these the requirement for titanium is because of corrosion problems arising from the organic chemicals in the process, the use of seawater or polluted cooling waters, or from complex aggressive catalysts in the reaction. [Pg.875]

Reduction of the aromatic amine (15) is the usual source of (14), and reductive amination of (16) gives (15). There are many published routes to (15) of which addition of an activating group (17) is probably easiest on a large scale. You may also have considered using nitro compound (18) or epoxide (19). [Pg.425]

Dining large-scale diazotisation of the amine, severe local overheating is thought to have caused the explosion observed. The effect could not be reproduced in the laboratory. [Pg.700]

During the vacuum fractional distillation of bulked residues (7.2 t containing 30-40% of the bis(hydroxyethyl) derivative, and up to 900 ppm of iron) at 210-225°C/445-55 mbar in a mild steel still, a runaway decomposition set in and accelerated to explosion. Laboratory work on the material charged showed that exothermic decomposition on the large scale would be expected to set in around 210-230°C, and that the induction time at 215°C of 12-19 h fell to 6-9 h in presence of mild steel. Quantitative work in sealed tubes showed a maximum rate of pressure rise of 45 bar/s, to a maximum developed pressure of 200 bar. The thermally induced decomposition produced primary amine, hydrogen chloride, ethylene, methane, carbon monoxide and carbon dioxide. [Pg.983]

The first practical, large-scale synthesis of 2-amino-5-fluorothiazole 84 employs the reaction of dilithiated 2-butoxycarbonylaminothiazole 83 with A-fluorobenzenesulfonimide (NFSi) <06OPRD346>. This reaction generates a 70 15 mixture of the desired fluorinated thiazole 84 and the sulphone 85, and after three consecutive recrystallizations thiazole 84 is isolated in 35-40% yield. This procedure has been utilized to prepare multikilogram quantities of 84, which is a heterocyclic amine component of a series of glucokinase inhibitors. [Pg.249]

The method for immobilizing EGF-His on SAMs gave rise to the need for fabricated cultureware that could allow large-scale expansion of pure NSCs. We attempted to construct culture modules with surface areas much larger than the laboratory-scale substrates described above. For uniformly anchoring EGF-His over a large area, we utilized a glass plate with amine functionalities on the surface. [Pg.185]


See other pages where Amines large-scale is mentioned: [Pg.304]    [Pg.448]    [Pg.64]    [Pg.257]    [Pg.259]    [Pg.262]    [Pg.95]    [Pg.89]    [Pg.268]    [Pg.88]    [Pg.463]    [Pg.205]    [Pg.452]    [Pg.61]    [Pg.222]    [Pg.137]    [Pg.118]    [Pg.134]    [Pg.227]    [Pg.17]    [Pg.161]    [Pg.345]    [Pg.1052]    [Pg.163]    [Pg.59]    [Pg.136]    [Pg.248]    [Pg.4]    [Pg.371]    [Pg.217]    [Pg.134]    [Pg.289]    [Pg.687]    [Pg.307]    [Pg.318]    [Pg.336]    [Pg.41]    [Pg.77]    [Pg.514]    [Pg.226]   
See also in sourсe #XX -- [ Pg.233 ]




SEARCH



Large-Scale Oxidation of Amines

© 2024 chempedia.info