Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amines electrolytes

Disubstituted nitroxides constitute a well-known class of rather stable free radicals. N,N-disubstituted anions of organometallic hydroxylamines have just one additional electron more than the corresponding nitroxide. Oxidation of the rearranged anions of silyl or germylhydroxyl amines, electrolytically or with oxygen, produces solutions of organometal nitroxides (30). Examples are shown in Eqs. (19)-(21). These nitroxides are stable in dilute solution for several days at room temperature. [Pg.17]

Colourless liquid with a characteristic ammo-niacal smell m.p. 9 C, b.p. 106°C. Miscible with water. It is present in pepper as the alkaloid piperine from which it can be obtained by healing with alkali. It can also be prepared by the reduction of pyridine, either electrolytically or by other means. Piperidine is a strong base, behaving like the aliphatic amines. [Pg.315]

Fluorocarbons are made commercially also by the electrolysis of hydrocarbons in anhydrous hydrogen fluoride (Simons process) (14). Nickel anodes and nickel or steel cathodes are used. Special porous anodes improve the yields. This method is limited to starting materials that are appreciably soluble in hydrogen fluoride, and is most useflil for manufacturing perfluoroalkyl carboxyflc and sulfonic acids, and tertiary amines. For volatile materials with tittle solubility in hydrofluoric acid, a complementary method that uses porous carbon anodes and HF 2KF electrolyte (Phillips process) is useflil (14). [Pg.283]

The covalent character of mercury compounds and the corresponding abiUty to complex with various organic compounds explains the unusually wide solubihty characteristics. Mercury compounds are soluble in alcohols, ethyl ether, benzene, and other organic solvents. Moreover, small amounts of chemicals such as amines, ammonia (qv), and ammonium acetate can have a profound solubilizing effect (see COORDINATION COMPOUNDS). The solubihty of mercury and a wide variety of mercury salts and complexes in water and aqueous electrolyte solutions has been well outlined (5). [Pg.112]

Tannate Complexation. Certain dmgs, those that contain amine groups, complex readily with tannic acid. Such complexes release the dmg gradually and uniformly. The rate seems to be affected by the pH and the electrolytes present in the gastrointestinal tract. At lower pH, the dmg is released more quickly. Other complexing compounds have also been used. [Pg.231]

Electrolytic reductions generally caimot compete economically with chemical reductions of nitro compounds to amines, but they have been appHed in some specific reactions, such as the preparation of aminophenols (qv) from aromatic nitro compounds. For example, in the presence of sulfuric acid, cathodic reduction of aromatic nitro compounds with a free para-position leads to -aminophenol [123-30-8] hy rearrangement of the intermediate N-phenyl-hydroxylamine [100-65-2] (61). [Pg.263]

Nitriles. The electrolytic reduction of nitriles requires a high negative potential, but can lead to amines in good yields under the right conditions. This reaction occurs in acidic media according to the following equation (62). [Pg.263]

Aminophenols are either made by reduction of nitrophenols or by substitution. Reduction is accompHshed with iron or hydrogen in the presence of a catalyst. Catalytic reduction is the method of choice for the production of 2- and 4-aminophenol (see Amines BY reduction). Electrolytic reduction is also under industrial consideration and substitution reactions provide the major source of 3-aminophenol. [Pg.310]

Tertiary heterocyclic enamines are reduced with metals in acidic media 142) or electrolytically (237,238) and their salts are reduced with lithium aluminum hydride or sodium borohydride (239,240) to the corresponding saturated amines. [Pg.287]

In both cases, the hydride ion approaches the double bond from the sterically more accessible side of the molecule. Reduction of imines by metals and acids, electrolytically or by formic acid gives saturated secondary amines (38,255). [Pg.289]

Electrolysis, Me4N Cl , 5°, 65-98% yield. " Acylation of a tosylated amine with BOC or benzoyl reduces the potential required for electrolytic cleavage so that these aryltosyl groups can be selectively removed in the presence of a simple tosylamide. °... [Pg.605]

Lithium hexafluoroarsenate is thermally stable [54, 55] but shows environmental risks due to possible degradation products [56-58], even though it is itself not very toxic. Its LD 50 value is similar to that of lithium perchlorate [55]. Just like lithium hexafluorophosphate, it can initiate the polymerization of cyclic ethers. Polymerization may be inhibited by tertiary amines [59], or 2-methylfuran [60], yielding highly stable electrolytes. [Pg.462]

Reference 81 describes the use of a salt prepared from a trialkylamine or tris(hydroxyalkyl)amine and sulfonated C8-C20 a-olefins together with a sulfobetaine in a stable liquid detergent having a high content of dissolved electrolytes. These liquid detergents are useful for hair, hands, and clothing. [Pg.424]

Electropolymerization is also an attractive method for the preparation of modified electrodes. In this case it is necessary that the forming film is conductive or permeable for supporting electrolyte and substrates. Film formation of nonelectroactive polymers can proceed until diffusion of electroactive species to the electrode surface becomes negligible. Thus, a variety of nonconducting thin films have been obtained by electrochemical oxidation of aromatic phenols and amines Some of these polymers have ligand properties and can be made electroactive by subsequent inincorporation of transition metal ions... [Pg.56]

Direct Electron Transfer. We have already met some reactions in which the reduction is a direct gain of electrons or the oxidation a direct loss of them. An example is the Birch reduction (15-14), where sodium directly transfers an electron to an aromatic ring. An example from this chapter is found in the bimolecular reduction of ketones (19-55), where again it is a metal that supplies the electrons. This kind of mechanism is found largely in three types of reaction, (a) the oxidation or reduction of a free radical (oxidation to a positive or reduction to a negative ion), (b) the oxidation of a negative ion or the reduction of a positive ion to a comparatively stable free radical, and (c) electrolytic oxidations or reductions (an example is the Kolbe reaction, 14-36). An important example of (b) is oxidation of amines and phenolate ions ... [Pg.1508]

A substrate containing an amine carboxylate moiety is converted in an electrolyte solution in the presence of a strong acid to a cationic intermediate, an N-acyliminium cation, by electrooxidative reaction. This species is immediately reacted with an allylsilane [66, 67]. By nucleophilic reachon, C-C bond formahon is achieved. [Pg.445]


See other pages where Amines electrolytes is mentioned: [Pg.117]    [Pg.119]    [Pg.1085]    [Pg.937]    [Pg.117]    [Pg.119]    [Pg.1085]    [Pg.937]    [Pg.163]    [Pg.385]    [Pg.133]    [Pg.183]    [Pg.261]    [Pg.337]    [Pg.256]    [Pg.406]    [Pg.291]    [Pg.299]    [Pg.101]    [Pg.112]    [Pg.88]    [Pg.115]    [Pg.359]    [Pg.111]    [Pg.122]    [Pg.341]    [Pg.132]    [Pg.628]    [Pg.47]    [Pg.547]    [Pg.742]    [Pg.20]    [Pg.310]    [Pg.361]    [Pg.8]    [Pg.264]    [Pg.371]   
See also in sourсe #XX -- [ Pg.58 ]




SEARCH



Amines electrolytic separation

© 2024 chempedia.info