Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral auxiliaries amines

ImH+ imidazolium cation amine (chiral auxiliary reagent derived... [Pg.434]

Progress has been made toward enantioselective and highly regioselective Michael type alkylations of 2-cyclohexen-l -one using alkylcuprates with chiral auxiliary ligands, e. g., anions of either enantiomer of N-[2-(dimethylamino)ethyl]ephedrine (E. J. Corey, 1986), of (S)-2-(methoxymethyl)pyrrolidine (from L-proline R. K. EHeter, 1987) or of chiramt (= (R,R)-N-(l-phenylethyl)-7-[(l-phenylethyl)iinino]-l,3,5-cycloheptatrien-l-amine, a chiral aminotro-ponimine G. M. Villacorta, 1988). Enantioselectivities of up to 95% have been reported. [Pg.20]

Since most often the selective formation of just one stereoisomer is desired, it is of great importance to develop highly selective methods. For example the second step, the aldol reaction, can be carried out in the presence of a chiral auxiliary—e.g. a chiral base—to yield a product with high enantiomeric excess. This has been demonstrated for example for the reaction of 2-methylcyclopenta-1,3-dione with methyl vinyl ketone in the presence of a chiral amine or a-amino acid. By using either enantiomer of the amino acid proline—i.e. (S)-(-)-proline or (/ )-(+)-proline—as chiral auxiliary, either enantiomer of the annulation product 7a-methyl-5,6,7,7a-tetrahydroindan-l,5-dione could be obtained with high enantiomeric excess. a-Substituted ketones, e.g. 2-methylcyclohexanone 9, usually add with the higher substituted a-carbon to the Michael acceptor ... [Pg.242]

To control the stereochemistry of 1,3-dipolar cycloaddidon reacdons, chiral auxiliaries are introduced into either the dipole-part or dipolarophile A recent monograph covers this topic extensively ° therefore, only typical examples are presented here. Alkenes employed in asymmetric 1,3-cycloaddidon can be divided into three main groups (1) chiral allyhc alcohols, f2 chiral amines, and Hi chiral vinyl sulfoxides or vinylphosphine oxides. [Pg.251]

As well as the disubstituted C2-symmelrie pyrrolidines E and F, the monosubstituted (f> )-2-(mcthoxymethyl)pyrrolidine G can be used as chiral auxiliary for the diastereoselecti ve addition of organomctallic reagents to a-oxo amides16. As with the phenylglyoxylic acid derivatives derived from amines E and F. methyllithium or methylmagnesium bromide in diethyl ether preferentially attack the (,S)-mms-conformer 11 (R = ( 6H5), leading to predominant formation of the (2 S)-diastercomer by Re-side attack. [Pg.102]

Chiral imines derived from 1-phenylethanone and (I. Sj-exo-l, 7,7-trimethyIbicyclo-[2.2.1]heptan-2-amine [(S)-isobornylamine], (.S>1-phenylethanamine or (R)-l-(1-naphthyl) ethanamine are transformed into the corresponding (vinylamino)dichloroboranes (e.g., 3) by treatment with trichloroborane and triethylamine in dichloromethane. Reaction of the chiral boron azaenolates with aromatic aldehydes at 25 "C, and subsequent acidic hydrolysis, furnishes aldol adducts with enantiomeric excesses in the range of 2.5 to 47.7%. Significantly lower asymmetric inductions are obtained from additions of the corresponding lithium and magnesium azaenolates. Best results arc achieved using (.S )-isobornylamine as the chiral auxiliary 3. [Pg.599]

I.4.4.2.2. Stereoselective Streeker Synthesis with Chiral Amines as Auxiliaries... [Pg.786]

In Ugi four-component reactions (for mechanism, see Section 1.4.4.1.) all four components may potentially serve as the stereodifferentiating tool65. However, neither the isocyanide component nor the carboxylic acid have pronounced effects on the overall stereodiscrimination60 66. As a consequence, the factors influencing the stereochemical course of Ugi reactions arc similar to those in Strecker syntheses. The use of chiral aldehydes is commonly found in substrate-controlled syntheses whereas the asymmetric synthesis of new enantiomerically pure compounds via Ugi s method is restricted to the application of optically active amines as the chiral auxiliary group. [Pg.795]

Within the biooxidation of disulfides, chiral thiosulfinates become available. Tert-Butyl tert-butanethiosulfinate represents a particularly valuable chiral auxiliary for the preparation of several chiral sulfoxides and sulfinimines, which can be subsequently transformed into branched amine compounds, P-aminoacids, and chiral aziridines. This product is accessible readily by mediated biooxidation of tert-butyl... [Pg.256]

Kinetic resolution of racemic allylic acetates has been accomplished via asymmetric dihydroxylation (p. 1051), and 2-oxoimidazolidine-4-carboxy-lates have been developed as new chiral auxiliaries for the kinetic resolution of amines. Reactions catalyzed by enzymes can be utilized for this kind of resolution. ... [Pg.154]

A number of other types of chiral auxiliaries have been employed in enolate alkylation. Excellent results are obtained using amides of pseudoephedrine. Alkylation occurs anti to the a-oxybenzyl group.93 The reactions involve the Z-enolate and there is likely bridging between the two lithium cations, perhaps by di-(isopropyl)amine.94... [Pg.42]

Waldmann used (R) and (5>aminoacid methyl esters and chiral amines as chiral auxiliaries in analogous aza-Diels-Alder reactions with cyclodienes.111 The diastereoselectivity of these reactions ranged from moderate to excellent and the open-chain dienes reacted similarly. Recently, the aza-Diels-Alder reaction was used by Waldmann in the asymmetric synthesis of highly functionalized tetracyclic indole derivatives (Eq. 12.45), which is useful for the synthesis of yohimbine- and reserpine-type alkaloids.112... [Pg.402]

Dienes with Chiral Auxiliaries The use of dienes with the chiral auxiliary attached to the C-l position of the dienes is the most popular in asymmetric Diels-Alder reactions.59 In 1980, Trost reported high asymmetric induction in the Diels-Alder reaction using l-(S)-0-methylmandeloxy-l,4-butadiene59a However, the result obtained by Trost et al. has remained unique for more than a decade, at least in terms of enantioselectivity. The asymmetric Diels-Alder reaction of chiral diene-amines with nitroalkenes gives aminocyclohexenes with good diastereoselectivity (Eq. 8.37).60 The development in the area of chiral dienes is slow it may be due to the difficulty of preparing these compounds. [Pg.248]

Chiral amines were always considered important targets for synthetic chemists, and attempts to prepare such compounds enantioselectively date back to quite early times. Selected milestones for the development of enantioselective catalysts for the reduction of C = N functions are listed in Table 34.1. At first, only heterogeneous hydrogenation catalysts such as Pt black, Pd/C or Raney nickel were applied. These were modified with chiral auxiliaries in the hope that some induction - that is, transfer of chirality from the auxiliary to the reactant -might occur. These efforts were undertaken on a purely empirical basis, without any understanding of what might influence the desired selectivity. Only very few substrate types were studied and, not surprisingly, enantioselectivities were... [Pg.1193]

In summary, the reaction of osmium tetroxide with alkenes is a reliable and selective transformation. Chiral diamines and cinchona alkakoid are most frequently used as chiral auxiliaries. Complexes derived from osmium tetroxide with diamines do not undergo catalytic turnover, whereas dihydroquinidine and dihydroquinine derivatives have been found to be very effective catalysts for the oxidation of a variety of alkenes. OsC>4 can be used catalytically in the presence of a secondary oxygen donor (e.g., H202, TBHP, A -methylmorpholine-/V-oxide, sodium periodate, 02, sodium hypochlorite, potassium ferricyanide). Furthermore, a remarkable rate enhancement occurs with the addition of a nucleophilic ligand such as pyridine or a tertiary amine. Table 4-11 lists the preferred chiral ligands for the dihydroxylation of a variety of olefins.61 Table 4-12 lists the recommended ligands for each class of olefins. [Pg.224]

A synthesis of novel chiral phosphine oxide aminal 113 has been developed by reacting phosphine oxide aldehyde 111 with diamine 112. The condensation gave a single diastereomer of the phosphine oxide aminal in 65% yield. This compound can be used as chiral auxiliary in asymmetric synthesis (Equation 15) <1996TA3431, 1996TL3051, 1996TL7465>. [Pg.59]

Recently, Schaumann et al. 153,154 an(j Bienz et tf/.155,156 have developed dependable routes for the resolution of racemic functionalized organosilanes with Si-centered chirality using chiral auxiliaries, such as binaphthol (BINOL), 2-aminobutanol, and phenylethane-l,2-diol (Scheme 2). For instance, the successive reaction of BINOL with butyllithium and the chiral triorganochlorosilanes RPhMeSiCl (R = /-Pr, -Bu, /-Bu) affords the BINOL monosilyl ethers 9-11, which can be resolved into the pure enantiomers (A)-9-ll and (7 )-9-11, respectively. Reduction with LiAlFF produces the enantiomerically pure triorgano-H-silanes (A)- and (R)-RPhMeSiH (12, R = /-Pr 13, -Bu 14, /-Bu), respectively (Scheme 2). Tamao et al. have used chiral amines to prepare optically active organosilanes.157... [Pg.411]

The use of chiral auxiliaries has been developed into elegant three-step sequences to achieve high ee s (Figure 2). In the general scheme a ketone is derivatized with a chiral amine. Low temperature lithiation and alkylation followed by hydrolysis produces the alkylated ketone in moderate to excellent ee s. The auxiliaries most often used are (S)-valine tert-butyl ester (Koga), l-amino-2-methoxymethylpyrrolidine (Enders) and (S)-2-amino-1-... [Pg.67]


See other pages where Chiral auxiliaries amines is mentioned: [Pg.194]    [Pg.248]    [Pg.101]    [Pg.115]    [Pg.477]    [Pg.982]    [Pg.982]    [Pg.186]    [Pg.1216]    [Pg.51]    [Pg.53]    [Pg.1256]    [Pg.361]    [Pg.265]    [Pg.174]    [Pg.806]    [Pg.304]    [Pg.113]    [Pg.279]    [Pg.99]    [Pg.168]    [Pg.196]    [Pg.41]   


SEARCH



Amines aldol reaction, chiral auxiliary

Amines chiral auxiliaries derived from

Amines chirality

Asymmetric reductive amination diastereoselective chiral auxiliaries

Chiral aminals

Chiral amines

Chiral auxiliaries amination

Chiral ferrocenylalkyl amines auxiliaries

Chirality auxiliaries

© 2024 chempedia.info