Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amines allyl from nucleophilic

Based on the above-mentioned stereochemistry of the allylation reactions, nucleophiles have been classified into Nu (overall retention group) and Nu (overall inversion group) by the following experiments with the cyclic exo- and ent/n-acetales 12 and 13[25], No Pd-catalyzed reaction takes place with the exo-allylic acetate 12, because attack of Pd(0) from the rear side to form Tr-allyl-palladium is sterically difficult. On the other hand, smooth 7r-allylpalladium complex formation should take place with the endo-sWyWc acetate 13. The Nu -type nucleophiles must attack the 7r-allylic ligand from the endo side 14, namely tram to the exo-oriented Pd, but this is difficult. On the other hand, the attack of the Nu -type nucleophiles is directed to the Pd. and subsequent reductive elimination affords the exo products 15. Thus the allylation reaction of 13 takes place with the Nu nucleophiles (PhZnCl, formate, indenide anion) and no reaction with Nu nucleophiles (malonate. secondary amines, LiP(S)Ph2, cyclopentadienide anion). [Pg.294]

Some nucleophiles other than carbon nucleophiles are allylated. Amines are good nucleophiles. Diethylamine is allylated with allyl alcohol[7]. Allylammes are formed by the reaction of allyl alcohol with ammonia by using dppb as a ligand. Di- and triallylamines are produced commercially from allyl alcohol and ammonia[l74]. [Pg.329]

A wide range of carbon, nitrogen, and oxygen nucleophiles react with allylic esters in the presence of iridium catalysts to form branched allylic substitution products. The bulk of the recent literature on iridium-catalyzed allylic substitution has focused on catalysts derived from [Ir(COD)Cl]2 and phosphoramidite ligands. These complexes catalyze the formation of enantiomerically enriched allylic amines, allylic ethers, and (3-branched y-8 unsaturated carbonyl compounds. The latest generation and most commonly used of these catalysts (Scheme 1) consists of a cyclometalated iridium-phosphoramidite core chelated by 1,5-cyclooctadiene. A fifth coordination site is occupied in catalyst precursors by an additional -phosphoramidite or ethylene. The phosphoramidite that is used to generate the metalacyclic core typically contains one BlNOLate and one bis-arylethylamino group on phosphorus. [Pg.170]

This result is consistent with an equilibrium between an initially formed a-substituled allyl tellnroxide (resulting from the well-known regio-controlled electrophilic attack at the y-carbon) and the y-isomer (which is really the main product, as detected by NMR). In the snbseqnent reaction with amines, the more nucleophilic alkylamines attack the central carbon atom, giving rearranged products, whereas the less nucleophilic arylamines attack the terminal carbon, giving the thermodynamic y-product. [Pg.342]

The reaction proceeds well with unhindered secondary amines as both nucleophiles and bases. The yield of allylic amine formed depends upon how easily palladium hydride elimination occurs from the intermediate. In cases such as the phenylation of 2,4-pentadienoic acid, elimination is very facile and no allylic amines are formed with secondary amine nucleophiles, while phenylation of isoprene in the presence of piperidine gives 29% phenylated diene and 69% phenylated allylic amine (equation 30).84 Arylation occurs at the least-substituted and least-hindered terminal diene carbon and the amine attacks the least-hindered terminal ir-allyl carbon. If one of the terminal ir-allyl carbons is substituted with two methyl groups, however, then amine substitution takes place at this carbon. The reasons for this unexpected result are not clear but perhaps the intermediate reacts in a a- rather than a ir-form and the tertiary center is more accessible to the nucleophile. Primary amines have been used in this reaction also, but yields are only low to moderate.85 A cyclic version occurs with o-iodoaniline and isoprene.85... [Pg.850]

Although the C—N bond of allylamines is difficult to cleave, it can be cleaved in AcOH, probably by forming amine salt. However, the allylation of nucleophiles with the allylamine 138 is catalysed by Ni DPPB [72], Removal of the allyl group from allylamines is possible with Ni(dppp)Cl2 DIBAL and used for deprotection of amines, which are protected as allylamines [73], Pd DPPB is less active. [Pg.124]

Many studies of the addition of nucleophiles to palladium-allyl complexes have been conducted. Hayashi has shown that the additions of stabilized anions, such as malonate anions or amine nucleophiles, to chiral, non-racemic allyl complexes occur with inversion of configuration.Addition of excess phosphine and either diethyl malonate or dimethylamine to a chiral, non-racemic allyl complex results in nucleophilic attack with nearly complete inversion. The reaction with sodium dimethylmalonate is shown at the right of Equation 11.40. In contrast, nonstabilized carbanions such as allyl or phenyl magnesium chloride react with the same Ti -allylpalladium complex with retention of configuration as shown at the left of Equation 11.40. The stereochemistry from reaction of the Grignard reagents likely results from nucleophilic attack at the metal, followed by reductive elimination. [Pg.437]

Owing to the reversible nature of the allylic sulfenate/allylic sulfoxide interconversion, the stereochemical outcome of both processes is treated below in an integrated manner. However, before beginning the discussion of this subject it is important to point out that although the allylic sulfoxide-sulfenate rearrangement is reversible, and although the sulfenate ester is usually in low equilibrium concentration with the isomeric sulfoxide, desulfurization of the sulfenate by thiophilic interception using various nucleophiles, such as thiophenoxide or secondary amines, removes it from equilibrium, and provides a useful route to allylic alcohols (equation 11). [Pg.724]

Thus removal of water from classical rather inactive fluoride reagents such as tetrabutylammonium fluoride di- or trihydrate by silylation, e.g. in THF, is a prerequisite to the generation of such reactive benzyl, allyl, or trimethylsilyl anions. The complete or partial dehydration of tetrabutylammonium fluoride di- or trihydrate is especially simple in silylation-amination, silylation-cyanation, or analogous reactions in the presence of HMDS 2 or trimethylsilyl cyanide 18, which effect the simultaneous dehydration and activation of the employed hydrated fluoride reagent (cf, also, discussion of the dehydration of such fluoride salts in Section 13.1). For discussion and preparative applications of these and other anhydrous fluoride reagents, for example tetrabutylammonium triphenyldifluorosilicate or Zn(Bp4)2, see Section 12.4. Finally, the volatile trimethylsilyl fluoride 71 (b.p. 17 °C) will react with nucleophiles such as aqueous alkali to give trimethylsilanol 4, HMDSO 7, and alkali fluoride or with alkaline methanol to afford methoxytri-methylsilane 13 a and alkali fluoride. [Pg.21]

Petasis reported an efficient addition of vinyl boronic acid to iminium salts.92 While no reaction was observed when acetonitrile was used as solvent, the reaction went smoothly in water to give allyl amines (Eq. 11.54). The reaction of the boron reagent with iminium ions generated from glyoxylic acid and amines affords novel a-amino acids (Eq. 11.55). Carboalumination of alkynes in the presence of catalytic Cp2ZrCl2 and H2O affords vinylalane intermediates, which serve as nucleophiles in the subsequent addition to enantiomerically enriched... [Pg.359]

A-Protected amines were assembled on solid-phase via sulfonamide-based handle 58 (Scheme 27) [67]. Tertiary sulfonamides were generated upon reaction with allylic, benzylic and primary alcohols under Mitsu-nobu conditions. Secondary amines were released from the support using mild nucleophilic conditions such as treatment with thiophenol and potassium carbonate. [Pg.202]

An important variant for transition metal-catalyzed carbon-nitrogen bond formation is allylic substitution (for reviews, see1,la lh). Nucleophilic attack by an amine on an 7r-allyl intermediate, generated from either an allylic alcohol derivative,2 16,16a 16f an alkenyloxirane,17-19,19a-19d an alkenylaziridine19,19a 19d, or a propargyl alcohol derivative,21,21a 21d gives an allylic amine derivative. [Pg.695]

After the initial demonstration of stoichiometric nucleophilic attack on 7i-allyl ligands, catalytic allylic substitution reactions were pursued. In 1970, groups from Union Carbide [3, 4], Shell Oil [5], and Toray Industries [6] published or patented examples of catalytic allylic substitution. All three groups reported allylic amination with palladium catalysts. The Toray Industries report also demonstrated the exchange of aryl ether and ester leaving groups, and the patent from Shell Oil includes catalysts based on rhodium and platinum. [Pg.172]

Reactions of allylic electrophiles with stabilized carbon nucleophiles were shown by Helmchen and coworkers to occur in the presence of iridium-phosphoramidite catalysts containing LI (Scheme 10) [66,69], but alkylations of linear allylic acetates with salts of dimethylmalonate occurred with variable yield, branched-to-linear selectivity, and enantioselectivity. Although selectivities were improved by the addition of lithium chloride, enantioselectivities still ranged from 82-94%, and branched selectivities from 55-91%. Reactions catalyzed by complexes of phosphoramidite ligands derived from primary amines resulted in the formation of alkylation products with higher branched-to-linear ratios but lower enantioselectivities. These selectivities were improved by the development of metalacyclic iridium catalysts discussed in the next section and salt-free reaction conditions described later in this chapter. [Pg.183]

As previously discussed, activation of the iridium-phosphoramidite catalyst before addition of the reagents allows less basic nitrogen nucleophiles to be used in iridium-catalyzed allylic substitution reactions [70, 88]. Arylamines, which do not react with allylic carbonates in the presence of the combination of LI and [Ir(COD)Cl]2 as catalyst, form allylic amination products in excellent yields and selectivities when catalyzed by complex la generated in sim (Scheme 15). The scope of the reactions of aromatic amines is broad. Electron-rich and electron-neutral aromatic amines react with allylic carbonates to form allylic amines in high yields and excellent regio- and enantioselectivities as do hindered orlAo-substituted aromatic amines. Electron-poor aromatic amines require higher catalyst loadings, and the products from reactions of these substrates are formed with lower yields and selectivities. [Pg.191]

A diverse group of secondary and tertiary amines are readily synthesized from the reaction of primary and secondary amines with allylic carbonates in the presence of preformed iridium metalacycles, but the direct synthesis of primary amines via iridium-catalyzed allylic amination requires the use of ammonia as a nucleophile. The asymmetric allylation of ammonia had not been reported until very recently, and it is not a common reagent in other metal-catalyzed reactions. Nonetheless, Hartwig and coworkers developed the reactions of ammonia with allylic carbonates in the presence of la generated in situ [89]. Reactions conducted in the initial work led exclusively to the products from diallylation (Scheme 16). Further advances in... [Pg.191]

The high concentration of ammonia that is required for selective formation of primary allylic amines suggests that ammonia is much less reactive toward nucleophilic attack on an allyl ligand than the primary allylic amine products. The reactivity of different nucleophiles toward allyl ligands was assessed by treating the allylir-idium complex 6a with ammonia and l-phenylprop-2-en-l-amine. No product from allylation of ammonia was detected from this reaction. In addition, the reaction of an allylic carbonate with the combination of ammonia and l-phenylprop-2-en-l-amine in the presence of lb did not produce detectable amounts of the product from allylation of ammonia. These results confirm that the primary amine is much more... [Pg.200]

Products from reactions with diacylamines or nosylamines can be very easily deprotected to give primary aUylamines. These were used as nucleophiles in allyhc substitutions to give secondary amines, which were transformed into unsymmetri-cally 2,5-disubstituted 2,5-dihydropyrroles (Scheme 9.28) [28aj. Thus, the allylic... [Pg.237]

In 1991, Kessar and coworkers demonstrated that the kinetic barrier could be lowered by complexing the tertiary amine with BF3, snch that i-BuLi is able to deprotonate the ammoninm compound, which can be added to aldehydes and ketones as shown by the example in Scheme 4a. Note the selectivity of deprotonation over vinyl and allyl sites. A limitation of this methodology is that the ylide intermediate does not react well with alkyl hahde electrophiles. To get aronnd this, a seqnence that begins with the stannylation and decomplexation shown in Scheme 4b was developed. The stannane can be isolated in 94% yield (Scheme 4b) and snbseqnently snbjected to tin-lithium exchange to afford an unstabilized lithiomethylpiperidine that is a very good nucleophile. However, isolation of the stannane is not necessary and a procedure was devised in which the amine is activated with BF3, deprotonated, stannylated, decomplexed from BF3 with CsF, transmetalated back to lithium and alkylated, all in one pot (Scheme 4c). ... [Pg.1007]


See other pages where Amines allyl from nucleophilic is mentioned: [Pg.383]    [Pg.24]    [Pg.61]    [Pg.955]    [Pg.479]    [Pg.3548]    [Pg.203]    [Pg.955]    [Pg.955]    [Pg.3547]    [Pg.103]    [Pg.243]    [Pg.796]    [Pg.331]    [Pg.175]    [Pg.500]    [Pg.21]    [Pg.358]    [Pg.58]    [Pg.67]    [Pg.243]    [Pg.96]    [Pg.711]    [Pg.458]    [Pg.205]    [Pg.180]    [Pg.175]    [Pg.110]   


SEARCH



Allyl amine

Allylation nucleophiles

Allylic amination

Allylic aminations

Amines allylation

Amines, nucleophilicity

From aminals

From amines

Nucleophile amines

Nucleophiles amines

Nucleophilic amination

Nucleophilic amines

© 2024 chempedia.info