Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amination reactions bond formation

The reverse reaction (bond formation, see Figure 9.3, bottom) did not work with a-chymotrypsin in a water/organic medium, probably due to extreme hindrance of the catalyst. The approach was successfully validated, detecting chemical bond formation by the use of a supported aldehyde, which was reacted with an amine and subsequently reduced with NaBH3CN the stable reaction product produced detectable resin bound PCR amplification (Figure 9.4). [Pg.197]

It was reported only recently that A-methyl transfer from an oxaziridine to an amine occurs with formation of an N—N bond (79JA6671). N—N bond forming reactions with A-unsubstituted oxaziridines had been found immediately after discovery of this class of compound (64CB2521) and have led to simple hydrazine syntheses (79AHC(24)63). Secondary amines like diethylamine or morpholine are A-aminated by (52) in the course of some minutes at room temperature with yields exceeding 90% (77JPR195). Further examples are the amination of aniline to phenylhydrazine, and of the Schiff base (96) to the diaziridine (97). [Pg.209]

In the second major method of peptide synthesis the carboxyl group is activated by converting it to an active ester, usually a p-nitrophenyl ester. Recall from Section 20.12 that esters react with ammonia and amines to give fflnides. p-Nitrophenyl esters are much more reactive than methyl and ethyl esters in these reactions because p-nitrophenoxide is a better (less basic) leaving group than methoxide and ethoxide. Simply allowing the active ester and a C-protected amino acid to stand in a suitable solvent is sufficient to bring about peptide bond formation by nucleophilic acyl substitution. [Pg.1139]

Carbon-carbon bond formation reactions and the CH activation of methane are another example where NHC complexes have been used successfully in catalytic applications. Palladium-catalysed reactions include Heck-type reactions, especially the Mizoroki-Heck reaction itself [171-175], and various cross-coupling reactions [176-182]. They have also been found useful for related reactions like the Sonogashira coupling [183-185] or the Buchwald-Hartwig amination [186-189]. The reactions are similar concerning the first step of the catalytic cycle, the oxidative addition of aryl halides to palladium(O) species. This is facilitated by electron-donating substituents and therefore the development of highly active catalysts has focussed on NHC complexes. [Pg.14]

The reaction is generally believed to proceed via the formation of ionic acylam-monium intermediate compounds (Reaction 1, Scheme 2.27). The equilibrium constant of the acylammonium formation depends mostly on steric and resonance factors, while the basicity of the tertiary amine seems to play a secondary role.297 In die case of the less basic compounds, such as acidic phenols, and of strong tertiary amines, such as Uialkylamines, the reaction has been reported to proceed through a general base mechanism via the formation of hydroxy-amine H-bonded complexes (Reaction 2, Scheme 2.27).297... [Pg.76]

The above-described structures are the main representatives of the family of nitrogen ligands, which cover a wide spectrum of activity and efficiency for catalytic C - C bond formations. To a lesser extent, amines or imines, associated with copper salts, and metalloporphyrins led to good catalysts for cyclo-propanation. Interestingly, sulfinylimine ligands, with the chirality provided solely by the sulfoxide moieties, have been also used as copper-chelates for the asymmetric Diels-Alder reaction. Amide derivatives (or pyridylamides) also proved their efficiency for the Tsuji-Trost reaction. [Pg.144]

Sulfate monoesters can react by dissociative paths, and this is the favored path. Whether such reactions are concerted or involve a very short-lived sulfur trioxide intermediate has been the subject of debate. ° Benkovic and Benkovic reported evidence suggesting that the nucleophile is present (though there is little bond formation) in the transition state for the reaction of amines with p-nitrophenyl sulfate. Alkyl esters of sulfuric or sulfonic acids normally react with C-0 cleavage only when this is disfavored, as in aryl esters, does one see S-0 cleavage. Sulfate diester... [Pg.23]

Enthalpies are often used to describe the energetics of bond formations. For example, when an amide forms through the condensation reaction between an ester and an amine, the new C-N bond, has an enthalpy of formation of -293 kj/mole. The higher the negative value for the bond enthalpy of formation, the stronger the bond. An even more useful concept is the enthalpy of a reaction. For any reaction, we can use the fact that enthalpy is a state function. A state function is one whose value is independent of the path traveled. So, no matter how we approach a chemical reaction, the enthalpy of the reaction is always the same. The enthalpy of... [Pg.66]

Anionic domino processes are the most often encountered domino reactions in the chemical literature. The well-known Robinson annulation, double Michael reaction, Pictet-Spengler cyclization, reductive amination, etc., all fall into this category. The primary step in this process is the attack of either an anion (e. g., a carban-ion, an enolate, or an alkoxide) or a pseudo anion as an uncharged nucleophile (e. g., an amine, or an alcohol) onto an electrophilic center. A bond formation takes place with the creation of a new real or pseudo-anionic functionality, which can undergo further transformations. The sequence can then be terminated either by the addition of a proton or by the elimination of an X group. [Pg.48]

Figure 3.2 The efficiency of an EDC-mediated reaction may be increased through the formation of a sulfo-NHS ester intermediate. The sulfo-NHS ester is more effective at reacting with amine-containing molecules. Thus, higher yields of amide bond formation may be realized using this two-step process as opposed to using a single-step EDC reaction. Figure 3.2 The efficiency of an EDC-mediated reaction may be increased through the formation of a sulfo-NHS ester intermediate. The sulfo-NHS ester is more effective at reacting with amine-containing molecules. Thus, higher yields of amide bond formation may be realized using this two-step process as opposed to using a single-step EDC reaction.

See other pages where Amination reactions bond formation is mentioned: [Pg.300]    [Pg.926]    [Pg.934]    [Pg.1139]    [Pg.416]    [Pg.934]    [Pg.61]    [Pg.422]    [Pg.429]    [Pg.104]    [Pg.202]    [Pg.208]    [Pg.215]    [Pg.165]    [Pg.95]    [Pg.76]    [Pg.43]    [Pg.256]    [Pg.61]    [Pg.716]    [Pg.260]    [Pg.318]    [Pg.348]    [Pg.29]    [Pg.135]    [Pg.46]    [Pg.68]    [Pg.394]    [Pg.371]    [Pg.292]    [Pg.319]    [Pg.339]    [Pg.14]    [Pg.43]    [Pg.174]    [Pg.177]    [Pg.217]    [Pg.219]    [Pg.228]    [Pg.238]    [Pg.372]   
See also in sourсe #XX -- [ Pg.420 , Pg.421 ]




SEARCH



Aminal formation

Aminals, formation

Amination reactions carbon-bromine bond formation

Amination reactions formation

Amines formation

Bond-formation reactions

Bonding amines

Carbon heteroatom bond forming reactions aminals, formation

© 2024 chempedia.info