Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amides synthesis diamines

Amide-containing diamines can also be used for the synthesis of poly(amide imide)s, by combination with dianhydrides. The use of diamines containing amide groups was actually evaluated at an early date [173,176]. The general synthetic route is exemplified in Scheme (34) with pyromellitic anhydride and 4,4 -diamino-benzanilide [177] ... [Pg.579]

Primary and secondary amines also react with epoxides (or in situ produced episulfides )r aziridines)to /J-hydroxyamines (or /J-mercaptoamines or 1,2-diamines). The Michael type iddition of amines to activated C—C double bonds is also a useful synthetic reaction. Rnally unines react readily with. carbonyl compounds to form imines and enamines and with carbo-tylic acid chlorides or esters to give amides which can be reduced to amines with LiAlH (p. Ilf.). All these reactions are often applied in synthesis to produce polycyclic alkaloids with itrogen bridgeheads (J.W. Huffman, 1967) G. Stork, 1963 S.S. Klioze, 1975). [Pg.291]

Synthesis and Properties. A number of monomers have been used to prepare PQs and PPQs, including aromatic bis((9-diamines) and tetramines, aromatic bis(a-dicarbonyl) monomers (bisglyoxals), bis(phenyl-a-diketones) and a-ketones, bis(phenyl-a-diketones) containing amide, imide, and ester groups between the a-diketones. Significant problems encountered are that the tetraamines are carcinogenic, difficult to purify, and have poor stabihty, and the bisglyoxals require an arduous synthesis. [Pg.536]

Other Preparative Reactions. Polyamidation has been an active area of research for many years, and numerous methods have been developed for polyamide formation. The synthesis of polyamides has been extensively reviewed (54). In addition, many of the methods used to prepare simple amides are appHcable to polyamides (55,56). Polyamides of aromatic diamines and aUphatic diacids can also be made by the reaction of the corresponding aromatic diisocyanate and diacids (57). [Pg.224]

Nylon resins are made by numerous methods (53) ranging from ester amidation (54) to the Schotten-Baumann synthesis (55). The most commonly used method for making nylon-6,6 and related resins is the heat-induced condensation of monomeric salt complexes (56). In this process, stoichiometric amounts of diacid and diamine react in water to form salts. Water is removed and further heating converts the carboxylate functions to amide linkages. Chain lengths are controlled by small amounts of monofunctional reagents. The molten finished nylon resin can be dkectly extmded to pellets. [Pg.266]

PA-6,6 is made from the relatively expensive materials hexamethylene diamine and adipic acid. An alternative synthesis of PA-6,6 from adiponitrile and hexamethylene diamine utilizing water is under investigation.16 PA-6 can be synthesized in a continuous process at atmospheric pressure, but reaction times are very long as the ring-opening initiation step is particularly slow. The reaction time can be shortened considerably by carrying out prepolymerization in the presence of excess water at pressure however, this makes the continuous polymerization process more complex. Copolymers with amide units of uniform length (diamides) are relatively new the diamide units are able to crystallize easily and have a thermally stable crystalline structure. [Pg.137]

Amine-terminated siloxane oligomers have also been utilized in the synthesis of various siloxane-amide and siloxane-imide copolymers, High molecular weight siloxane-amide copolymers have been synthesized by the solution or interfacial co-polymerization of siloxane oligomers with sebacoyl chloride or terephthaloyl chloride respectively 1S5,165). In some reactions diamine chain extenders have also been utilized. Thermal and dynamic mechanical characterization of these copolymers have shown the formation of multiphase systems160). Compression molded films displayed very good elastomeric properties. [Pg.33]

In most of the studies discussed above, except for the meta-linked diamines, when the aromatic content (dianhydride and diamine chain extender), of the copolymers were increased above a certain level, the materials became insoluble and infusible 153, i79, lsi) solution to this problem with minimum sacrifice in the thermal properties of the products has been the synthesis of siloxane-amide-imides183). In this approach pyromellitic acid chloride has been utilized instead of PMDA or BTDA and the copolymers were synthesized in two steps. The first step, which involved the formation of (siloxane-amide-amic acid) intermediate was conducted at low temperatures (0-25 °C) in THF/DMAC solution. After purification of this intermediate thin films were cast on stainless steel or glass plates and imidization was obtained in high temperature ovens between 100 and 300 °C following a similar procedure that was discussed for siloxane-imide copolymers. Copolymers obtained showed good solubility in various polar solvents. DSC studies indicated the formation of two-phase morphologies. Thermogravimetric analysis showed that the thermal stability of these siloxane-amide-imide systems were comparable to those of siloxane-imide copolymers 183>. [Pg.35]

A synthesis of 5-(aioylamino)-2-aryloxazoles 39 is outlined in Scheme 9. Heating the glycol 37 (Bt = benzotriazol-l-yl), prepared from glyoxal and benzotriazole, with an amide in the presence of an ion exchange resin yields the acylated diamine 38, which cyclises by the action of sodium hydiide in DMF <95JHC1651>. [Pg.211]

Ikariya and Noyori et al. also reported the synthesis of new chiral Cp Rh and Cp Ir complexes (13 and 14) bearing chiral diamine ligands [(R,R)-TsCYDN and (R,R)-TsDPEN] (Scheme 5.10) these are isoelectronic with the chiral Ru complex mentioned above, and may be used as effective catalysts in the asymmetric transfer hydrogenation of aromatic ketones [42], The Cp Ir hydride complex [Cp IrH(R,R)-Tscydn] (14c) and 5-coordinated amide complex (14d), both of which would have an important role as catalytic intermediates, were also successfully prepared. [Pg.115]

Polymer Synthesis and Modification. The condensation reaction between either BTDA or BDSDA and ODA was performed in DMAc at room temperature under a nitrogen atmosphere. ODA (0.004 mole) was added to a nitrogen-purged glass septum bottle with 7 ml DMAc. One of the dianhydrides (0.004 mole) was then added to the diamine solution with an additional milliliter of DMAc resulting in 15-25 wt% solids depending upon the monomer combination. The resulting solution was stirred for 20-24 hours to form the poly(amide acid), a polyimide precursor. For the modified polyimides, anhydrous cobalt(II) chloride (0.001 mole) was added as a solid within one-half hour after the dianhydride. [Pg.396]

The synthesis of polyamides follows a different route from that of polyesters. Although several different polymerization reactions are possible, polyamides are usually produced either by direct amidation of a diacid with a diamine or the self-amidation of an amino acid. The polymerization of amino acids is not as useful because of a greater tendency toward cycliza-tion (Sec. 2-5b). Ring-opening polymerization of lactams is also employed to synthesize polyamides (Chap. 7). Poly(hexamethylene adipamde) [IUPAC poly(iminohexanedioylimi-nohexane-l,6-diyl) or poly(iminoadipoyliminohexane-l,6-diyl)], also referred to as nylon 6/6, is synthesized from hexamethylene diamine and adipic acid [Zimmerman, 1988 Zimmerman and Kohan, 2001]. A stoichiometric balance of amine and carboxyl groups is readily obtained by the preliminary formation of a 1 1 ammonium salt (XU ) in aqueous solution at a concentration of 50%. The salt is often referred to as a nylon salt. Stoichiometric... [Pg.97]

The establishment of the stereocenter in efavirenz provides a challenging goal for the synthetic chemist (Pierce et al., 1998 Thompson et al., 1995). The synthesis starts by treating 4-chloroaniline with pivaloyl chloride under biphasic conditions to provide the desired amide 10 (Scheme 6.2). Ortho metallation as directed by the amide is accomplished with two equivalents of n-butyllithium (or w-hexyllithium) in tetramethylethylene diamine (TMEDA) and MTBE. The resulting dianion is quenched with ethyl trifluoroacetate to provide pivaloylamide ketone 11 (Euhrer and Gschwend, 1979). The amide is hydrolyzed in situ to provide the trifluoroketone hydrate hydrochloride 12, which crystallizes from the reaction mixture (>98% pure). [Pg.87]

The highest flexibility for a variation of the functional group and the chains X and Y (i.e. the size of the rim of the lamp shade) will be realiad when the synthesis of 3 is convergent and modular (Scheme 1). Amide bonds can easily be formed in macrocyclizations [13], therefore macrocyclic diamines 7 and diacyl dichlorides 8 had to be prepared. For the synthesis of macrocyclic diamines 7, also a large number of reactions are known. However, in this case a reduction of a macrocyclic diamide could not be achieved [11]. Therefore, another route was used the formation of macrocyclic diimines 6 (bis-Schiff bases) followed by NaBH4 reduction to the macrocyclic diamines 7. This approach has the advantage that for the construction of macrocyclic diimines 6, the metal ion template effect [14] may be exploited. [Pg.63]

The idea of synthesizing imide oligomers which carry acetylenic terminations appeared attractive because homopolymerization through acetylenic endgroups occurs without any volatile evolution and provides materials with good properties. Landis et. al (8,9) published the synthesis of such acetylene terminated imide oligomers from benzophenone tetracarboxylic anhydride, aromatic diamine and 3-ethynylaniline via the classical route. As usual, the amide acid is formed as an intermediate which, after chemical cyclodehydration, provides the polymide. Since ethynyl-terminated polyimide is used as a matrix resin for fiber composites, processing is possible via the amide acid, which is soluble in acetone, or via the fully imidized prepolymer, which is soluble in NMP. The chemical structure of the fully imidized ethynyl-terminated polyimide is provided in Fig. 44. [Pg.210]

The key to acetylene terminated polyimides is the availability of the end-capper which carries the acetylene group. Hergenrother (130) published a series of ATI resins based on 4-ethynylphthalic anhydride as endcapping agent. This approach first requires the synthesis of an amine-terminated amide acid prepolymer, by reacting 1 mole of tetracarboxylic dianhydride with 2 moles of diamine, which subsequently is endcapped with 4-ethynylphthalic anhydride. The imide oligomer is finally obtained via chemical cyclodehydration. The properties of the ATI resin prepared via this route are not too different from those prepared from 3-ethynylaniline as an endcapper. When l,3-bis(3-aminophenox)benzene was used as diamine, the prepolymer is completely soluble in DMAc or NMP at room temperature, whereas 4,4 -methylene dianiline and 4,4 -oxydianiline based ATIs were only partially soluble. The chemical structure of ATIs based on 4-ethynylphthalic anhydride endcapper is shown in Fig. 45. [Pg.212]

Considerable research effort has been devoted in recent years to the use of chloral derivatives for the synthesis of linear heterocyclic polymers. Of these, the most common are aromatic polyimides [1-12], Many of these polymers have been synthesised from compounds like 4,4 -diaminobenzophenone, and other diamines, which, as demonstrated in the previous chapter, can be obtained from chloral. Polyimides prepared from these diamines were largely synthesised by the conventional two-step procedure [11, 12] involving mild reaction of the diamines with the bis(phthalic)anhydrides, isolation of poly(o-carboxy)amide (PCA) prepolymers, and then processing into products followed by thermal or chemical imidisation [13—16] (Scheme 3.1). Some properties of polyimides prepared from 4,4 -diaminobenzophenone are provided in Table 3.1. [Pg.15]

Although complexes with these ligands are common in palladium(II) chemistry, their occurrence is more scarce in platinum(II) compounds. Nevertheless these complexes can be prepared, examples being platinum(II) complexes of the optically active quadridentate Schiff base of salicylaldehyde and (R)-l, 2-diamines.1212 An alternative synthesis involves formation of the Schiff base by reaction of a complexed amino ligand on platinum(II) with amide acetates (equation 372).1213... [Pg.439]


See other pages where Amides synthesis diamines is mentioned: [Pg.42]    [Pg.36]    [Pg.401]    [Pg.164]    [Pg.176]    [Pg.7]    [Pg.179]    [Pg.383]    [Pg.100]    [Pg.85]    [Pg.620]    [Pg.420]    [Pg.106]    [Pg.100]    [Pg.313]    [Pg.197]    [Pg.68]    [Pg.109]    [Pg.362]    [Pg.305]    [Pg.28]    [Pg.236]    [Pg.510]    [Pg.192]    [Pg.489]    [Pg.503]    [Pg.503]   
See also in sourсe #XX -- [ Pg.20 , Pg.21 , Pg.22 , Pg.23 ]




SEARCH



1,2-Diamines, synthesis

Amide synthesis

© 2024 chempedia.info