Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amides formation, from esters

Scheme 17.17 BEMP catalysed amide formation from esters and amino alcohols. Scheme 17.17 BEMP catalysed amide formation from esters and amino alcohols.
As a catalyst for ester and amide formation from acyl chlorides or anhydrides, 4-(di-methylamino)pyridine has been recommended (DMAP G. Hdfle, 1978). In the presence of this agent highly hindered hydroxyl groups, e.g. of steroids and carbohydrates, are acylated under mild conditions, which is difficult to achieve with other catalysts. [Pg.144]

In his cephalosporin synthesis methyl levulinate was condensed with cysteine in acidic medium to give a bicyclic thiazolidine. One may rationalize the regioselective formation of this bicycle with the assumption that in the acidic reaction mixture the tMoI group is the only nucleophile present, which can add to the ketone. Intramolecular amide formation from the methyl ester and acid-catalyzed dehydration would then lead to the thiazolidine and y-lactam rings. The stereochemistry at the carboxylic acid a-... [Pg.313]

The total syntheses of these pepper alkaloids are not those of pyrrolidines but rather syntheses of their acid parts. Thus dihydrowisanidine (137) has been prepared by a series of reactions, the key step of which is the formation of the carbon-carbon double bond by a Wittig-Homer reaction (217, 218). Schemes 41 and 42 summarize two syntheses of okolasine from sesamolmethyl ether (279) of course, routes to okolasine also yield the corresponding piperidine alkaloid wisanine. Molybdenum-catalyzed elimination of allylic acetate (149) yielded (E,E)-diene ester 150 en route to trichonine (220) worthy of note is the use of an aluminum amide in the preparation of amide 143 from ester 150 (Scheme 43). [Pg.326]

The enolates of other carbonyl compounds can be used in mixed aldol condensations. Extensive use has been made of the enolates of esters, thioesters, and amides. Of particular importance are several modified amides, such as those derived from oxazolidinones, that can be used as chiral auxiliaries. The methods for formation of these enolates are similar to those for ketones. Lithium, boron, tin, and titanium derivatives have all been used. Because of their usefulness in aldol additions and other synthetic methods (see especially Section 6.4.2.3, Part B), there has been a good deal of interest in the factors that control the stereoselectivity of enolate formation from esters. For simple esters such as ethyl propanoate, the E-enolate is preferred under kinetic conditions using a strong base such as EDA in THE solution. Inclusion of a... [Pg.692]

The formation of amides from ammonium salts of oxygen acids is in fact only a part of the dissociation of the intermediate addition compound in amide formation from an amine and an acid. The formation of amide from ester and ammonia is similar to the formation of amide from... [Pg.164]

You have learned several methods to make carhoxylic acids. We have also discussed how to make esters and amides from organic acids. Notice the similarity between amide formation and ester formation. Amide formation is in fact merely a collection of steps closely resembling those in Fischer esterification. We are beginning to see the generality of the addition—elimination process. The addition—elimination reaction will continue to be prominent throughout this and other chapters. [Pg.852]

Chemical Properties. Like neopentanoic acid, neodecanoic acid, C2QH2QO2, undergoes reactions typical of carboxyHc acids. For example, neodecanoic acid is used to prepare acid chlorides, amides (76), and esters (7,11,77,78), and, like neopentanoic acid, is reduced to give alcohols and alkanes (21,24). One area of reaction chemistry that is different from the acids is the preparation of metal salts. Both neopentanoic acid and neodecanoic acid, like all carboxyHc acids, can form metal salts. However, in commercial appHcations, metal salt formation is much more important for neodecanoic acid than it is for neopentanoic acid. [Pg.105]

The addition of isocyanides and azide to aldehyde-derived enamines has led to tetrazoles (533,536). On the other hand the vinylogous amide of acetoacetic ester and related compounds reacted with aldehydes, isocyanides and acids to give a-acylaminoamides (534). Iminopyrrolidones and imino-thiopyrrolidones were obtained from the addition of cyclohexylisocyanide and isocyanates or isothiocyanates to enamines (535). An interesting method for the formation of organophosphorus compounds is found in the reactions of imonium salts with dialkylphosphites (536). [Pg.424]

Scheme 3) [30]. The pY + 3 diversity alcohols (Ri)-OI I (Fig. 15) were attached to the template through a Mitsunobu coupling to provide ether derivatives of 16. Palladium-mediated Alloc deprotection followed by amide formation using the phosphate-ester-containing diversity acids (R2)-C02H provided the fully coupled resin-bound products of 17. Cleavage from the resin with 95% TFA/H20, which also afforded benzyl phosphate deprotection, followed by reversed-phase (RP) semipreparative... [Pg.55]

Since then, catalytic antibodies which catalyze different chemical reactions have been described. The reactions range from ester or carbonate hydrolysis to carbon-carbon bond forming reactions, bimolecular amide formation or peptide bond cleavage, so the application of catalytic antibodies to general synthetic organic chemistry seems to be very promising [22]. [Pg.307]

C domains can display functions that deviate from typical amide bond formation. Several C domains are postulated to act as ester synthases, catalyzing ester formation instead of amide formation. NRPS modules containing C domains that display this activity are present in the biosynthetic pathways for the kutznerides, cryptophycins, " cereulide, valinomycin, hectochlorin, and beauvericin. Each of these C domains likely utilizes a PCP-bound a-hydroxyl acceptor in the condensation reaction. Another NRPS C domain that catalyzes ester bond formation is involved in the biosynthesis of the polyketide-derived mycotoxins known as the fiimonisins. Du and coworkers have shown that a recombinant PCP-C didomain of an NRPS involved in the biosynthetic pathway of the fnmonisins can catalyze ester bond formation between hydroxyfumonisins and the A-acetylcysteamine thioester of tricarballylic acid, even though PCP-bound tricarballylic acid is not... [Pg.632]

A bigger effect for H2O than OH is very unusual and is a behavior certainly not shown by the uncoordinated amide. The effect is ascribed to a benefit from cyclization and concerted loss of protonated amide, without formation of the tetrahedral intermediate. Although the coordinated OH is some 10 times less effective than coordinated HjO (Table 6.4), it is still about 10 times faster with 15 than via external attack by OH at pH 7 on the chelated amide 13. Early studies showed that complexes of the type CoN4(H20)OH can promote the hydrolysis of esters, amides and dipeptides and that this probably arises via formation of ester, amide or peptide chelates. These then hydrolyze in the manner above. [Pg.312]

In search of a convenient procedure for preparing diazo substrates for the cycloaddition to Cgg, Wudl introduced the base-induced decomposition of tosyl-hydrazones [116]. This procedure allows the in situ generation of the diazo compoimd without the requirement of its purification prior to addition to Cgg. Since they are rapidly trapped by the fullerene, even unstable diazo compounds can be successfully used in the 1,3-dipolar cycloaddition. In a one-pot reaction the tosyUiydrazone is converted into its anion with bases such as sodium methoxide or butylHfhium, which after decomposition readily adds to Cgg (at about 70 °C). This method was first proven to be successful with substrate 142. Some more reactions that indicate the versatility of this procedure are shown in Table 4.4. Reaction of 142 with CgQ under the previously described conditions and subsequent deprotection of the tert-butyl ester leads to [6,6]-phenyl-C5j-butyric acid (PCBA) that can easily be functionalized by esterification or amide-formation [116]. PCBA was used to obtain the already described binaphthyl-dimer (obtained from 149 by twofold addition) in a DCC-coupling reaction [122]. [Pg.128]


See other pages where Amides formation, from esters is mentioned: [Pg.393]    [Pg.267]    [Pg.267]    [Pg.15]    [Pg.1022]    [Pg.25]    [Pg.900]    [Pg.13]    [Pg.1139]    [Pg.148]    [Pg.71]    [Pg.46]    [Pg.146]    [Pg.126]    [Pg.258]    [Pg.269]    [Pg.64]    [Pg.271]    [Pg.99]    [Pg.406]    [Pg.171]    [Pg.201]    [Pg.293]    [Pg.391]    [Pg.12]    [Pg.1095]    [Pg.1494]    [Pg.244]    [Pg.282]    [Pg.73]   
See also in sourсe #XX -- [ Pg.340 , Pg.341 ]




SEARCH



Amidation, esters

Amides formation from methyl esters

Amides from esters

Ester formation

Esters Formates

Esters amides

Formate esters

From amides

© 2024 chempedia.info