Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminum mechanical properties

Nickel—Copper. In the soHd state, nickel and copper form a continuous soHd solution. The nickel-rich, nickel—copper alloys are characterized by a good compromise of strength and ductihty and are resistant to corrosion and stress corrosion ia many environments, ia particular water and seawater, nonoxidizing acids, neutral and alkaline salts, and alkaUes. These alloys are weldable and are characterized by elevated and high temperature mechanical properties for certain appHcations. The copper content ia these alloys also easure improved thermal coaductivity for heat exchange. MONEL alloy 400 is a typical nickel-rich, nickel—copper alloy ia which the nickel content is ca 66 wt %. MONEL alloy K-500 is essentially alloy 400 with small additions of aluminum and titanium. Aging of alloy K-500 results in very fine y -precipitates and increased strength (see also Copper alloys). [Pg.6]

S, sand cast P, permanent mold cast D, pressure die cast. Aluminum and impurities constitute remainder. Table 22. Mechanical Properties of Aluminum Foundry Alloys ... [Pg.120]

The physical and mechanical properties of steel depend on its microstmcture, that is, the nature, distribution, and amounts of its metaHographic constituents as distinct from its chemical composition. The amount and distribution of iron and iron carbide determine most of the properties, although most plain carbon steels also contain manganese, siUcon, phosphoms, sulfur, oxygen, and traces of nitrogen, hydrogen, and other chemical elements such as aluminum and copper. These elements may modify, to a certain extent, the main effects of iron and iron carbide, but the influence of iron carbide always predominates. This is tme even of medium alloy steels, which may contain considerable amounts of nickel, chromium, and molybdenum. [Pg.384]

Physical and mechanical properties are given in Table 22 (109,110,112—114). The densities reflect the effect of aluminum the Zn- -27% Al aHoy is ca... [Pg.413]

The Zn—A1 system permits manipulation of the mechanical properties by suitable heat treatment. The aluminum-rich alpha phase is especially suitable for solution hardening since it can be supersaturated by as much as 30 wt % zinc. Furthermore, both alpha and beta phases can be strengthened by precipitation because of decreasing solute solubiUty with decreasing temperature. [Pg.413]

Alpha—beta aluminum alloys respond to heat treatment with a general improvement of mechanical properties. Heat treatment is accompHshed by heating to 815—870°C, quenching in water, and reannealing at 370—535°C, depending on the size and section of the casting. Different combinations of strength, hardness, and ductility can be obtained. Some nickel in aluminum bronze is in soHd solution with the matrix and helps refine the precipitate, and a smaller amount is in the K-intermetaUic compound. [Pg.238]

The gating and riseting system for cast aluminum bron2e is extremely important and must be arranged to iatroduce the metal quietly at the lowest portion of the mold. The alloys shrink well hence the gating and riseting must be well adapted to the particular casting. See Table 12 for properties of these alloys. Alloys C 95300, C 95400, and C 95500 are heat-treatable for iacreased mechanical properties and the last two should be temper-aimealed if used ia a corrosive environment. [Pg.250]

Structural Properties at Low Temperatures It is most convenient to classify metals by their lattice symmetiy for low temperature mechanical properties considerations. The face-centered-cubic (fee) metals and their alloys are most often used in the construc tion of cryogenic equipment. Al, Cu Ni, their alloys, and the austenitic stainless steels of the 18-8 type are fee and do not exhibit an impact duc tile-to-brittle transition at low temperatures. As a general nile, the mechanical properties of these metals with the exception of 2024-T4 aluminum, improve as the temperature is reduced. Since annealing of these metals and alloys can affect both the ultimate and yield strengths, care must be exercised under these conditions. [Pg.1127]

It should be noted that a number of aluminum alloys are available (see Table 28-16). Many have improved mechanical properties over pure aluminum. The wrought heat-treatable aluminum alloys have tensile strengths of 90 to 228 MPa (13,000 to 33,000 Ibf/in ) as annealed when they are fuUy hardened, strengths can go as high as 572 MPa (83,000 Ibf/in"). However, aluminum alloys usually have lower corrosion resistance than the pure metal. The alclad alloys have been developed to overcome this snortcoming. Alclad consists of an aluminum layer metaUurgicaUy bonded to a core alloy. [Pg.2450]

Bronzes are somewhat similar to brasses in mechanical properties and to high-zinc brasses in corrosion resistance (except that bronzes are not affected by stress cracking). Aluminum and silicon bronzes are very popiilar in the process industries because they combine good strength with corrosion resistance. [Pg.2451]

Quantifying the effect of surface roughness or morphology is difficult, however. Surface preparations that provide different degrees of surface roughness also usually produce surfaces that have different oxide thicknesses and mechanical properties, different compositions, or different contaminant levels. The problem of separation of these variables was circumvented in a recent study [52] by using a modified microtome as a micro milling machine to produce repeatable, well-characterized micron-sized patterns on clad 2024-T3 aluminum adherends. Fig. 2 shows the sawtooth profile created by this process. [Pg.446]

The outstanding properties of copper-base materials are high electrical and thermal conductivity, good durabihty in mildly corrosive chemical environments and excellent ductility for forming complex shapes. As a relatively weak material, copper is often alloyed with zinc (brasses), tin (bronzes), aluminum and nickel to improve its mechanical properties and corrosion resistance. [Pg.77]


See other pages where Aluminum mechanical properties is mentioned: [Pg.347]    [Pg.347]    [Pg.62]    [Pg.496]    [Pg.138]    [Pg.151]    [Pg.74]    [Pg.281]    [Pg.441]    [Pg.119]    [Pg.121]    [Pg.121]    [Pg.121]    [Pg.126]    [Pg.127]    [Pg.411]    [Pg.412]    [Pg.413]    [Pg.413]    [Pg.413]    [Pg.413]    [Pg.227]    [Pg.238]    [Pg.244]    [Pg.245]    [Pg.280]    [Pg.971]    [Pg.2413]    [Pg.155]    [Pg.362]    [Pg.438]    [Pg.438]    [Pg.950]    [Pg.1009]    [Pg.1158]    [Pg.87]    [Pg.87]    [Pg.199]    [Pg.199]   
See also in sourсe #XX -- [ Pg.160 ]

See also in sourсe #XX -- [ Pg.499 ]




SEARCH



Aluminum mechanisms

Aluminum oxide mechanical properties

Aluminum properties

Mechanical Property Weldable Aluminum Alloys

© 2024 chempedia.info