Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminum bauxite

Oxides of very reactive metals such as calcium or aluminum are reduced by electrolysis. In the case of aluminum, bauxite ore, AI2O3, is used. [Pg.536]

Aluminum is the most abundant metallic element in the Earth s crust and, after oxygen and silicon, the third most abundant element (see Fig. 14.1). However, the aluminum content in most minerals is low, and the commercial source of aluminum, bauxite, is a hydrated, impure oxide, Al203-xH20, where x can range from 1 to 3. Bauxite ore, which is red from the iron oxides that it contains (Fig. 14.23), is processed to obtain alumina, A1203, in the Bayer process. In this process, the ore is first treated with aqueous sodium hydroxide, which dissolves the amphoteric alumina as the aluminate ion, Al(OH)4 (aq). Carbon dioxide is then bubbled through the solution to remove OH ions as HCO and to convert some of the aluminate ions into aluminum hydroxide, which precipitates. The aluminum hydroxide is removed and dehydrated to the oxide by heating to 1200°C. [Pg.718]

Since 1949, the Aluminum Gompany of America has extracted galhum metal ftom aluminum bauxite ore. In the past galhum had few uses. Only recently, with the development of microprocessors, chips, computer, and the hke, has galhum found many profitable uses. [Pg.182]

BAYER PROCESS. Process for making alumina from bauxite. The main use of alumina is in the production of metallic aluminum. Bauxite is mixed with hot concentrated sodium hydroxide, which dissolves the alumina and silica. The silica is precipitated, and the dissolved alumina is separated from the solids, diluted, cooled, and then crystallized as aluminum hydroxide. The aluminum hydroxide is calcined to anhydrous alumina, which is then shipped to reduction plants. [Pg.190]

Aluminum is the most abundant metallic element in the Earth s crust and, following oxygen and silicon, the third most abundant element. However, the aluminum content in most minerals is low, and the commercial source of aluminum, bauxite, is a hydrated, impure oxide, Al203-xH20, where x can range up to 3. The bauxite ore, which is red from the iron oxides it contains, is processed to obtain alumina, Al2Q3. [Pg.821]

Aluminum Bauxite AI2O3 X H2O Australia, Brazil, Jamaica... [Pg.917]

In the production of aluminum, bauxite is treated with NaOH to produce NaA102 (sodium aluminate) that reacts with HF to produce Na3AlF6 (cryolite). The reaction can be represented as... [Pg.209]

Bureau of Mines, Mineral Industry Surreys, monthly. Reports on aluminum, bauxite, cadmium, chromite, copper, fluorspar, gold, lead, silver, tin, and zinc. [Pg.430]

Aluminum Bauxite (AI2O3.2H2O) Electrolysis of AI2O3 in molten cryolite (Na3AlF0)... [Pg.79]

Most metals will precipitate as the hydroxide in the presence of concentrated NaOH. Metals forming amphoteric hydroxides, however, remain soluble in concentrated NaOH due to the formation of higher-order hydroxo-complexes. For example, Zn and AP will not precipitate in concentrated NaOH due to the formation of Zn(OH)3 and Al(OH)4. The solubility of AP in concentrated NaOH is used to isolate aluminum from impure bauxite, an ore of AI2O3. The ore is powdered and placed in a solution of concentrated NaOH where the AI2O3 dissolves to form A1(0H)4T Other oxides that may be present in the ore, such as Fe203 and Si02, remain insoluble. After filtering, the filtrate is acidified to recover the aluminum as a precipitate of Al(OH)3. [Pg.211]

Aqueous solutions of caustic soda aie highly alkaline. Hence caustic soda is ptimatily used in neutralization reactions to form sodium salts (79). Sodium hydroxide reacts with amphotoric metals (Al, Zn, Sn) and their oxides to form complex anions such as AlO, ZnO. SnO ", and (or H2O with oxides). Reaction of AI2O2 with NaOH is the primary step during the extraction of alumina from bauxite (see Aluminum compounds) ... [Pg.514]

In 1990, appioximately 66,000 metric tons of alumina trihydiate [12252-70-9] AI2O2 3H20, the most widely used flame retardant, was used to inhibit the flammabihty of plastics processed at low temperatures. Alumina trihydrate is manufactured from either bauxite ore or recovered aluminum by either the Bayer or sinter processes (25). In the Bayer process, the bauxite ore is digested in a caustic solution, then filtered to remove siUcate, titanate, and iron impurities. The alumina trihydrate is recovered from the filtered solution by precipitation. In the sinter process the aluminum is leached from the ore using a solution of soda and lime from which pure alumina trihydrate is recovered (see Aluminum compounds). [Pg.458]

Sodium aluminate [1302-42-7] is another source of soluble aluminum made by leaching bauxite with caustic soda. As with alum, the active species are really its hydrolysis products which depend on the chemistry of the system to which it is added. It tends to raise the pH. It is available both as a soHd and as a solution (see Aluminum compounds, aluminates). [Pg.31]

Starch is a polysaccharide found in many plant species. Com and potatoes are two common sources of industrial starch. The composition of starch varies somewhat in terms of the amount of branching of the polymer chains (11). Its principal use as a flocculant is in the Bayer process for extracting aluminum from bauxite ore. The digestion of bauxite in sodium hydroxide solution produces a suspension of finely divided iron minerals and siUcates, called red mud, in a highly alkaline Hquor. Starch is used to settle the red mud so that relatively pure alumina can be produced from the clarified Hquor. It has been largely replaced by acryHc acid and acrylamide-based (11,12) polymers, although a number of plants stiH add some starch in addition to synthetic polymers to reduce the level of residual suspended soHds in the Hquor. Starch [9005-25-8] can be modified with various reagents to produce semisynthetic polymers. The principal one of these is cationic starch, which is used as a retention aid in paper production as a component of a dual system (13,14) or a microparticle system (15). [Pg.32]

A commercial process which uses hydrothermal leaching on a large scale is the Bayer process for production of aluminum oxide (see Aluminum compounds). This process is used to extract and precipitate high grade alurninum hydroxide (gibbsite [14762-49-3]) from bauxite [1318-16-7] ore. The hydrothermal process step is the extraction step in which concentrated sodium hydroxide is used to form a soluble sodium aluminate complex ... [Pg.497]

A.lkaline Solutions. The most important example of alkaline leach is the digestion of hydrated alumina from bauxite by a sodium hydroxide solution at 160-170°C, ie, the Bayer process (see Aluminumand aluminum alloys). [Pg.170]

Aluminum. All primary aluminum as of 1995 is produced by molten salt electrolysis, which requires a feed of high purity alumina to the reduction cell. The Bayer process is a chemical purification of the bauxite ore by selective leaching of aluminum according to equation 35. Other oxide constituents of the ore, namely siUca, iron oxide, and titanium oxide remain in the residue, known as red mud. No solution purification is required and pure aluminum hydroxide is obtained by precipitation after reversing reaction 35 through a change in temperature or hydroxide concentration the precipitate is calcined to yield pure alumina. [Pg.172]

Alternative Processes for Aluminum Production. In spite of its industrial dominance, the HaH-HAroult process has several inherent disadvantages. The most serious is the large capital investment requited resulting from the multiplicity of units (250 —1000 cells in a typical plant), the cost of the Bayer aluniina-puriftcation plant, and the cost of the carbon—anode plant (or paste plant for Soderberg anodes). Additionally, HaH-HAroult cells requite expensive electrical power rather than thermal energy, most producing countries must import alumina or bauxite, and petroleum coke for anodes is in limited supply. [Pg.100]

The CAS registry Hsts 5,037 aluminum-containing compounds exclusive of alloys and intermetaUics. Some of these are Hsted in Table 1. Except for nepheline and alunite in the USSR and Poland, bauxite is the raw material for all manufactured aluminum compounds. The term bauxite is used for ores that contain economically recoverable quantities of the aluminum hydroxide mineral gibbsite or the oxide—hydroxide forms boehmite and diaspore. [Pg.131]

Uses of bauxite other than for aluminum production are in refractories, abrasives, chemicals, and aluminous cements. Bauxites for these markets ... [Pg.132]

Eigure 1 illustrates the Bayer process as it is practiced in the 1990s. The primary purpose of a Bayer plant is to process bauxite to provide pure alumina for the production of aluminum. World production of Al(OH)2 totaled ca 55 x 10 t in 1988. Practically all of the hydroxide was obtained by Bayer processing and 90% of it was calcined to metallurgical grade alumina (AI2O2). However, about 10% of the bauxite processed serves as feedstock to the growing aluminum chemicals industry. [Pg.133]


See other pages where Aluminum bauxite is mentioned: [Pg.1010]    [Pg.161]    [Pg.25]    [Pg.160]    [Pg.921]    [Pg.161]    [Pg.499]    [Pg.602]    [Pg.1010]    [Pg.161]    [Pg.25]    [Pg.160]    [Pg.921]    [Pg.161]    [Pg.499]    [Pg.602]    [Pg.11]    [Pg.11]    [Pg.512]    [Pg.31]    [Pg.145]    [Pg.175]    [Pg.320]    [Pg.157]    [Pg.175]    [Pg.298]    [Pg.394]    [Pg.95]    [Pg.131]    [Pg.132]    [Pg.133]    [Pg.133]    [Pg.133]    [Pg.134]    [Pg.134]    [Pg.135]   
See also in sourсe #XX -- [ Pg.1006 , Pg.1007 ]




SEARCH



Aluminum chloride-bauxite catalyst

Bauxite

Bauxite, aluminum from

Bauxitic

© 2024 chempedia.info