Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alternative Finishes

These requirements are usually met with two-pack paints based on hydroxyl-rich polyester or acrylic resins in the pigmented pack and aliphatic polyisocyanates in the activator pack. Cure with this type of finish is relatively fast and complete even at low ambient temperatures. An alternative finish is an acrylic lacquer, similar to the lacquer used for refinishing motor cars. These finishes are applied to the assembled aircraft by operators protected by air-fed hoods and using airless or conventional spray guns. High durability pigments are included. [Pg.631]

In the main the comments recorded in this section apply to enamels fused onto sheet and cast iron. Enamel is, however, applied to aluminium, stainless steel, copper and noble metals on account of its aesthetic value and also to confer durability to the base metal. With low melting point metals such as aluminium it is obvious that superb resistance to chemicals is not so feasible as if iron was the base. Nevertheless, such metals are vitreous enamelled in growing quantities and sold, indicating that the range of colour and durability obtained is superior to that possible with alternative finishes. [Pg.773]

The while loop of the algorithm is executed until either all drops find the same solution (allDropsFollowTheSamePathO), that is, all drops traverse the same sequence of nodes, or another alternative finishing condition is satisfied (otherEndingConditionO). This condition may be used, for example, for limiting the number of iterations or the execution time. Another choice is to finish the loop if the best solution found so far is not surpassed during the last n iterations. [Pg.167]

The next phase will address eliminating lead from board finishes—the protective coatings applied to termination pads on printed wiring boards to protect metal conductors from degradation (e.g., oxidation, corrosion) and remain solder-wettable. Finishes are applied in a number of ways, including dipping into a molten metal bath (e.g., tin, solder), electroless plating, etc. Alternative finishes must, of course, be compatible with the lead-free alloy selected in Step 1. [Pg.28]

When a production or injection well is drilled, it is common practice to cement in place a casing which extends across the reservoir interval. The alternative is to leave the reservoir uncased, in a so-called bare foot completion, which is rarely done. When the drilling department finishes its work on the well, it is often left in the state of a cased hole, as on the left of Figure 9.14. [Pg.227]

The heat capacity can therefore be obtained by keeping a running count of and E during the simulation, from which their expectation values (E ) and (E) can be calculated at the enc of the calculation. Alternatively, if the energies are stored during the simulation then the value of ((E — (E)) ) can be calculated once the simulation has finished. This seconc approach may be more accurate due to round-off errors (E ) and (E) are usually botf large numbers and so there may be a large uncertainty in their difference. [Pg.323]

Fig. 1. An amplified outline scheme of the making of various wiaes, alternative products, by-products, and associated wastes (23). Ovals = raw materials, sources rectangles = wines hexagon = alternative products (decreasing wine yield) diamond = wastes. To avoid some complexities, eg, all the wine vinegar and all carbonic maceration are indicated as red. This is usual, but not necessarily tme. Similarly, malolactic fermentation is desired in some white wines. FW = finished wine and always involves clarification and stabilization, as in 8, 11, 12, 13, 14, 15, 33, 34, followed by 39, 41, 42. It may or may not include maturation (38) or botde age (40), as indicated for usual styles. Stillage and lees may be treated to recover potassium bitartrate as a by-product. Pomace may also yield red pigment, seed oil, seed tannin, and wine spidts as by-products. Sweet wines are the result of either arresting fermentation at an incomplete stage (by fortification, refrigeration, or other means of yeast inactivation) or addition of juice or concentrate. Fig. 1. An amplified outline scheme of the making of various wiaes, alternative products, by-products, and associated wastes (23). Ovals = raw materials, sources rectangles = wines hexagon = alternative products (decreasing wine yield) diamond = wastes. To avoid some complexities, eg, all the wine vinegar and all carbonic maceration are indicated as red. This is usual, but not necessarily tme. Similarly, malolactic fermentation is desired in some white wines. FW = finished wine and always involves clarification and stabilization, as in 8, 11, 12, 13, 14, 15, 33, 34, followed by 39, 41, 42. It may or may not include maturation (38) or botde age (40), as indicated for usual styles. Stillage and lees may be treated to recover potassium bitartrate as a by-product. Pomace may also yield red pigment, seed oil, seed tannin, and wine spidts as by-products. Sweet wines are the result of either arresting fermentation at an incomplete stage (by fortification, refrigeration, or other means of yeast inactivation) or addition of juice or concentrate.
A small amount of particleboard is made with a fire-retardant treatment for use in locations where codes require this material, as in some offices and elevators. Particleboards receive overlay and finishing treatments with ease. Wood veneers, melamine overlays, printed paper overlays, vinyl overlays, foils, and direct grain printing can all be done quite simply. A small amount of particleboard is also made in the form of shaped, molded articles such as furniture parts, paper roU plugs, bmsh bases, and even toilet seats. There is another small increment of particleboard made by the extmsion process. These products are made in small captive operations owned by furniture manufacturers which consume all of this production in their furniture. The extmsion process differs from conventional flat-pressed particleboard in that the wood furnish is forced between two stationary heated surfaces. The mats are formed from one edge and this edge is alternately formed and pushed between the heated platens, which are maintained at a distance equal to the thickness of board produced. This is an old, slow, small-scale process, but is stiU in use in at least one location. [Pg.393]

Decabromodiphenyl Oxide—Polyacrylate Finishes. An alternative to the diffusion technique is the appHcation of decabromodiphenyl oxide on the surface of fabrics in conjunction with binders (131). Experimental finishes using graft polymerization, in situ polymerization of phosphoms-containing vinyl monomers, or surface halogenation of the fibers also have been reported (129,130,132,133). [Pg.490]

Considerable effort is being made (ca 1993) to develop satisfactory flame retardants for blended fabrics. It has been feasible for a number of years to produce flame-resistant blended fabrics provided that they contain about 65% or more ceUulosic fibers. It appears probable that blends of even greater synthetic fiber content can be effectively made flame resistant. An alternative approach may be to first produce flame-resistant thermoplastic fibers by altering the chemical stmcture of the polymers. These flame-resistant fibers could then be blended with cotton or rayon and the blend treated with an appropriate flame retardant for the ceUulose, thereby producing a flame-resistant fabric. Several noteworthy finishes have been reported since the early 1970s. [Pg.491]

Ca.ndy. Its low melting point and sugar inversion properties make malic acid a desirable acidulant, especially in hard candy products (44,45). Due to their insolubiUty, hard water salts can cause clouding of the finished product. However, because of the higher solubiUty of calcium malate [17482-42-7] relative to alternative acidulants, clarity of the finished product is enhanced. Additionally, in sugar confectionery products where acidulation may exceed 2.0%, malic acid can provide economic benefits. [Pg.524]

Low temperature filtration (qv) is a common final refining step to remove paraffin wax in order to lower the pour point of the oil (14). As an alternative to traditional filtration aided by a propane or methyl ethyl ketone solvent, catalytic hydrodewaxing cracks the wax molecules which are then removed as lower boiling products. Finished lubricating oils are then made by blending these refined stocks to the desired viscosity, followed by introducing additives needed to provide the required performance. Table 3 Usts properties of typical commercial petroleum oils. Methods for measuring these properties are available from the ASTM (10). [Pg.237]

J. E. HiUis and R. W. Murray, "Finishing Alternatives for High Purity Magnesium AUoys," paper G-T87-003, in Ref. 134. [Pg.337]

In the CSIRO process, a reactive polyurethane prepolymer is appHed to a garment from perchloroethylene. The garment is then pressed and subsequendy steamed in an oven. A second polymer may sometimes be used in conjunction with the prepolymer. When this is employed, the process is termed the Serolan BAP Process (178). A number of alternative treatments are being investigated to achieve finishes that are more environmentally friendly (179). [Pg.449]

Industrial appHcations of enzymology form an important branch of biotechnology. Enzymatic processes enable natural raw materials to be upgraded and turned into finished products. They offer alternative ways of making products previously made only by conventional chemical processes. [Pg.284]

The design is viable only if it can be produced economically. The choice of production and fabrication method is largely determined by the choice of material. But the production route will also be influenced by the size of the production run, and how the component will be finished and joined to other components each class of material has its own special problems here they were discussed in Chapters 14, 19, 24 and 25. The choice of material and production route will, ultimately, determine the price of the product, so a second major iteration may be required if the costing shows the price to be too high. Then a new choice of material or component design, allowing an alternative production path, may have to be considered. [Pg.293]


See other pages where Alternative Finishes is mentioned: [Pg.744]    [Pg.753]    [Pg.769]    [Pg.604]    [Pg.860]    [Pg.271]    [Pg.744]    [Pg.753]    [Pg.769]    [Pg.604]    [Pg.860]    [Pg.271]    [Pg.364]    [Pg.286]    [Pg.397]    [Pg.572]    [Pg.96]    [Pg.405]    [Pg.552]    [Pg.304]    [Pg.512]    [Pg.233]    [Pg.31]    [Pg.56]    [Pg.86]    [Pg.102]    [Pg.480]    [Pg.443]    [Pg.446]    [Pg.25]    [Pg.250]    [Pg.199]    [Pg.483]    [Pg.140]    [Pg.148]    [Pg.273]    [Pg.1435]    [Pg.143]    [Pg.331]   


SEARCH



© 2024 chempedia.info